精英家教网 > 高中数学 > 题目详情
16.已知m,n是不同的直线,α,β是不同的平面,则下列命题是假命题的是(  )
A.若m?α,n?α,m∥n,则n∥αB.若α⊥β,n?α,n⊥β,则n∥α
C.若α∥β,m?α,则m∥βD.若α⊥β,α∩β=n,m⊥n,则m⊥β

分析 在A中,由线面平行的判定定理得n∥α;在B中,由面面垂直的性质定理和线面平行的判定定理得n∥α;在C中,由面面平行的性质定理得m∥β;在D中,m与β相交、平行或m?β.

解答 解:由m,n是不同的直线,α,β是不同的平面,知:
在A中,若m?α,n?α,m∥n,
则由线面平行的判定定理得n∥α,故A是真命题;
在B中,若α⊥β,n?α,n⊥β,
则由面面垂直的性质定理和线面平行的判定定理得n∥α,故B是真命题;
在C中,若α∥β,m?α,
则由面面平行的性质定理得m∥β,故C是真命题;
在D中,若α⊥β,α∩β=n,m⊥n,
则m与β相交、平行或m?β,故D是假命题.
故选:D.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是(  )
A.24 cmB.21 cmC.(24+4$\sqrt{2}$)cm2D.(20+4$\sqrt{2}$)cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆C:$\frac{x^2}{16}+\frac{y^2}{9}=1$,斜率为1的直线与椭圆交于A,B.则线段AB的中点轨迹方程为$9x+16y=0({-\frac{16}{5}≤x≤\frac{16}{5}})或({-\frac{9}{5}≤y≤\frac{9}{5}})或(椭圆内部)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)在△ABC中,sin2A=sin2B-sin2C-sinAsinC,求角B的大小.
(2)已知$\overrightarrow{OC}={a_{1008}}\overrightarrow{OA}+{a_{1009}}\overrightarrow{OB}$,且A、B、C三点共线,O、A、B三点不共线,求等差数列{an}的前2016项的和S2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知(3+x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,则a9=(  )
A.20B.21C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在?ABCD中,$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,3),对角线交点为O,则$\overrightarrow{CO}$等于(-$\frac{1}{2}$,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinx-3cosx=$\sqrt{5}$,则tanx=(  )
A.-2或$\frac{1}{2}$B.2或-$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.证明函数f(x)=3x+2在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=4sinx•sin2($\frac{π}{4}$+$\frac{x}{2}$)+cos2x
(1)设w>0,且w为常数,若函数y=f(wx)在区间[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函数,求w的取值范围;
(2)设集合A={x|$\frac{π}{6}$≤x≤$\frac{2π}{3}$},B={x||f(x)-m|<2},若A∪B=B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案