精英家教网 > 高中数学 > 题目详情
4.(1)在△ABC中,sin2A=sin2B-sin2C-sinAsinC,求角B的大小.
(2)已知$\overrightarrow{OC}={a_{1008}}\overrightarrow{OA}+{a_{1009}}\overrightarrow{OB}$,且A、B、C三点共线,O、A、B三点不共线,求等差数列{an}的前2016项的和S2016

分析 (1)由正弦定理和余弦定理即可得出.
(2)利用向量共线定理可得a1008+a1009=1,再利用等差数列的性质与求和公式即可得出.

解答 解:(1)由正弦定理和余弦定理得:cosB=$\frac{{{a^2}+{c^2}-{b^2}}}{2ac}$=$-\frac{1}{2}$
∴B=120°.
(2)由已知得:a1008+a1009=1,
∴a1+a2016=a1008+a1009=1.
∴等差数列{an}的前2016项的和S2016=1008.

点评 本题考查了正弦定理和余弦定理、向量共线定理、等差数列的性质与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x}{e^x}$.
(I)求f(x)的极值;
(II)求证:当x<1时,f(x)<f(2-x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow{a}$=(sin53°cos23°,cos23°cos53°),$\overrightarrow{b}$=(-cos53°sin23°,sin23°sin53°),$\overrightarrow{c}$=(1,t),$\overrightarrow{c}$∥($\overrightarrow{a}$+$\overrightarrow{b}$),则t值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=2sin(x+\frac{π}{6})$,$x∈[\frac{π}{6},\frac{2π}{3}]$的值域是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若△ABC中,AB=5,面积是10$\sqrt{3}$,A=60°,则BC边的是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用二分法求函数f(x)=-x3-3x+5的零点取的初始区间可以是(  )
A.(1,2)B.(-2,0)C.(0,1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n是不同的直线,α,β是不同的平面,则下列命题是假命题的是(  )
A.若m?α,n?α,m∥n,则n∥αB.若α⊥β,n?α,n⊥β,则n∥α
C.若α∥β,m?α,则m∥βD.若α⊥β,α∩β=n,m⊥n,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0的等差数列{an}的首项a1为a(a∈R),且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较$\frac{1}{a_2}+\frac{1}{{a_{2^2}^{\;}}}+\frac{1}{{a_{2^3}^{\;}}}+…+\frac{1}{{a_{2^n}^{\;}}}$与$\frac{1}{a_1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{OA}$2+$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OC}$(O为平面内任意一点),则△ABC的形状为(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

同步练习册答案