精英家教网 > 高中数学 > 题目详情
9.用二分法求函数f(x)=-x3-3x+5的零点取的初始区间可以是(  )
A.(1,2)B.(-2,0)C.(0,1)D.(-2,1)

分析 由于函数只有满足在零点两侧的函数值异号时,才可用二分法求函数f(x)的零点,经检验,A满足条件.

解答 解:二分法求变号零点时所取初始区间[a,b],应满足使f(a)•f(b)<0.
由于本题中函数f(x)=-x3-3x+5,由于f(1)=-1-3+5=1,f(2)=-8-6+5<0,显然满足f(2)•f(1)<0,
故函数f(x)=-x3-3x+5的零点可以取的初始区间是(1,2),
故选:A.

点评 本题主要考查函数的零点的定义,注意函数只有满足在零点两侧的函数值异号时,才可用二分法求函数f(x)的零点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=alnx-ax+1,当x∈(-2,0)时,函数f(x)的最小值为1,则a=(  )
A.-2B.2C.±1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆(x+2)2+(y+3)2=2的圆心和半径分别是(  )
A.(-2,3),1B.(2,-3),3C.(-2,-3),$\sqrt{2}$D.(2,-3),$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.f($\sqrt{x}$+1)=x+3,则f(x)=x2-2x+4,(x≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)在△ABC中,sin2A=sin2B-sin2C-sinAsinC,求角B的大小.
(2)已知$\overrightarrow{OC}={a_{1008}}\overrightarrow{OA}+{a_{1009}}\overrightarrow{OB}$,且A、B、C三点共线,O、A、B三点不共线,求等差数列{an}的前2016项的和S2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设向量$\overrightarrow{a}$=(cosωx-sinωx,-1),$\overrightarrow{b}$=(2sinωx,-1),其中ω>0,x∈R,已知函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最小正周期为4π.
(1)求f(x)的对称中心;
(2)若sinx0是关于t的方程2t2-t-1=0的根,且x0∈(-$\frac{π}{2}$,$\frac{π}{2}$),求f(x0)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在?ABCD中,$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,3),对角线交点为O,则$\overrightarrow{CO}$等于(-$\frac{1}{2}$,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)(-3)×4$\overrightarrow a$;
(2)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$
(3)$(2\overrightarrow a+3\overrightarrow b-\overrightarrow c)-(3\overrightarrow a-2\overrightarrow b+\overrightarrow c)$
(4)$\frac{1}{12}[{2({2\overrightarrow a+8\overrightarrow b})-4({4\overrightarrow a-2\overrightarrow b})}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{AB}$,且对AB边上任意一点N,恒有$\overrightarrow{NB}$•$\overrightarrow{NC}$≥$\overrightarrow{MB}$•$\overrightarrow{MC}$,则有(  )
A.AB⊥BCB.AB⊥ACC.AB=ACD.AC=BC

查看答案和解析>>

同步练习册答案