分析 (1)利用三角函数的恒等变换以及两个向量的数量积公式化简函数f(x)的解析式,再根据周期求得ω的值,从而求出函数的对称中心;
(2)求得 方程2t2-t-1=0的两根,可得sinx0=-$\frac{1}{2}$,可得x0的值,从而求得f(x0)的值.
解答 解:(1)f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=(cosωx-sinωx,-1)•(2sinωx,-1)=2sinωxcosωx-2sin2ωx+1
=sin2ωx+cos2ωx=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$),
因为 T=4π,所以ω=$\frac{1}{4}$,
由$\frac{x}{2}$+$\frac{π}{4}$=2kπ,解得:x=4kπ-$\frac{π}{2}$,
故f(x)的对称中心是(4kπ-$\frac{π}{2}$,0);
(2)方程2t2-t-1=0的两根为 t1=-$\frac{1}{2}$,t2=1,
因为 x0∈(-$\frac{π}{2}$,$\frac{π}{2}$),所以 sinx0∈(-1,1),
所以sinx0=-$\frac{1}{2}$,即x0=-$\frac{π}{6}$.
又由已知 f(x0)=$\sqrt{2}$sin($\frac{1}{2}$x0+$\frac{π}{4}$),
所以 f(-$\frac{π}{6}$)=$\sqrt{2}$sin(-$\frac{π}{12}$+$\frac{π}{4}$)=$\sqrt{2}$sin$\frac{π}{6}$=$\frac{\sqrt{2}}{2}$.
点评 本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,两个向量的数量积公式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 命题“同位角相等,两直线平行”的逆否命题为:“两直线不平行,同位角不相等” | |
| B. | “若实数x,y满足x2+y2=0,则x,y全为0”的否命题为真命题 | |
| C. | 若p∧q为假命题,则p、q均为假命题 | |
| D. | 对于命题p:?x0∈R,${x_0}^2+2{x_0}+2≤0$,则?p:?x∈R,x2+2x+2>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com