精英家教网 > 高中数学 > 题目详情
19.在△ABC中,$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{AB}$,且对AB边上任意一点N,恒有$\overrightarrow{NB}$•$\overrightarrow{NC}$≥$\overrightarrow{MB}$•$\overrightarrow{MC}$,则有(  )
A.AB⊥BCB.AB⊥ACC.AB=ACD.AC=BC

分析 分别取AB,BC的中点D,E,将$\overrightarrow{NB}$•$\overrightarrow{NC}$表示为向量等式,得到$\overrightarrow{NB}$•$\overrightarrow{NC}$取最小值是的位置即可得到正确答案.

解答 解:分别取AB,BC的中点D,E,所以$\overrightarrow{NB}$•$\overrightarrow{NC}$=($\overrightarrow{EB}-\overrightarrow{EN}$)•($\overrightarrow{EC}-\overrightarrow{EN}$)=|NE|2-|BE|2
当且仅当N到E的距离最小时,$\overrightarrow{NB}$•$\overrightarrow{NC}$取最小值,
由题意,N与M重合时$\overrightarrow{NB}$•$\overrightarrow{NC}$取得最小值,因此M到E的距离最近,
所以EM⊥AB,而CD∥EM,所以CD⊥AB,而CD是中线,
所以CA=CB;
故选D.

点评 本题考查了平面向量的运算;关键是结合几何图形得到不等式中等号成立时的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.用二分法求函数f(x)=-x3-3x+5的零点取的初始区间可以是(  )
A.(1,2)B.(-2,0)C.(0,1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的有③(写出全部正确命题的序号).
①平面ABC⊥平面ABD;
②平面ABD⊥平面BCD;
③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;
④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.阅读程序:若INPUT语句中输入m,n的数据分别是72,168,则程序运行的结果为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{OA}$2+$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OC}$(O为平面内任意一点),则△ABC的形状为(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面上的点集A及点P,在集合A内任取一点Q,线段PQ长度的最小值称为点P到集合A的距离,记作d(P,A),如果A={(x,y)|x2+y2=1},点P坐标为$(2\sqrt{2},2\sqrt{2})$,那么d(P,A)=2;如果点集A所表示的图象是半径为2的圆,那么点集D={P|d(P,A)≤1}所表示的图形的面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若圆锥的侧面展开图圆心角为120°,则圆锥的底面半径和母线之比为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(θ)=$\frac{2co{s}^{2}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2co{s}^{2}(π+θ)+cos(-θ)}$,则f($\frac{π}{3}$)的值为(  )
A.-$\frac{5}{12}$B.$\frac{1}{2}$C.1D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,PA、PB为⊙O的切线,∠D=100°,∠CBE=40°,则∠P=(  )
A.60°B.40°C.80°D.70°

查看答案和解析>>

同步练习册答案