精英家教网 > 高中数学 > 题目详情
13.已知公差不为0的等差数列{an}的首项a1为a(a∈R),且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较$\frac{1}{a_2}+\frac{1}{{a_{2^2}^{\;}}}+\frac{1}{{a_{2^3}^{\;}}}+…+\frac{1}{{a_{2^n}^{\;}}}$与$\frac{1}{a_1}$的大小.

分析 (Ⅰ)由题意可知:${a_2}^2={a_1}•{a_4}$,即${({a_1}+d)^2}={a_1}({a_1}+3d)$,整理得:${a_1}d={d^2}$,即可d=a1=a,数列{an}的通项公式;
(Ⅱ)由a${a}_{{2}^{n}}$=2n•a,${T_n}=\frac{1}{a}(\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{2^n})=\frac{1}{a}•\frac{{\frac{1}{2}(1-{{(\frac{1}{2})}^n})}}{{1-\frac{1}{2}}}=\frac{1}{a}[1-{(\frac{1}{2})^n}]$,当a>0时,${T_n}<\frac{1}{a_1}$;当$a<0时,{T_n}>\frac{1}{a_1}$.

解答 解:(Ⅰ)设等差数列{an}的公差为d,由题意可知${a_2}^2={a_1}•{a_4}$,
即${({a_1}+d)^2}={a_1}({a_1}+3d)$,
∴${a_1}d={d^2}$,
∵d≠0,
∴d=a1=a.
∴通项公式an=na.…(5分)
(Ⅱ)记${T_n}=\frac{1}{a_2}+\frac{1}{{{a_{2^2}}}}+…+\frac{1}{{{a_{2^n}}}},因为{a_{2^n}}={2^n}a$
∴${T_n}=\frac{1}{a}(\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{2^n})=\frac{1}{a}•\frac{{\frac{1}{2}(1-{{(\frac{1}{2})}^n})}}{{1-\frac{1}{2}}}=\frac{1}{a}[1-{(\frac{1}{2})^n}]$,
从而,当a>0时,${T_n}<\frac{1}{a_1}$;
当$a<0时,{T_n}>\frac{1}{a_1}$.…(5分)

点评 本题考查等差数列的性质及通项公式,等比数列前n项和公式,考查数列与不等式的综合应用,考查分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球.
(1)用列表或画树状图的方法列出所有可能结果.       
(2)求事件A=“取出球的号码之和不小于6”的概率.     
(3)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线 y=x+1上”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)在△ABC中,sin2A=sin2B-sin2C-sinAsinC,求角B的大小.
(2)已知$\overrightarrow{OC}={a_{1008}}\overrightarrow{OA}+{a_{1009}}\overrightarrow{OB}$,且A、B、C三点共线,O、A、B三点不共线,求等差数列{an}的前2016项的和S2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在?ABCD中,$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,3),对角线交点为O,则$\overrightarrow{CO}$等于(-$\frac{1}{2}$,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinx-3cosx=$\sqrt{5}$,则tanx=(  )
A.-2或$\frac{1}{2}$B.2或-$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)(-3)×4$\overrightarrow a$;
(2)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$
(3)$(2\overrightarrow a+3\overrightarrow b-\overrightarrow c)-(3\overrightarrow a-2\overrightarrow b+\overrightarrow c)$
(4)$\frac{1}{12}[{2({2\overrightarrow a+8\overrightarrow b})-4({4\overrightarrow a-2\overrightarrow b})}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.证明函数f(x)=3x+2在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.己知a=${∫}_{0}^{\frac{π}{2}}$($\frac{1}{2}$-sin2$\frac{x}{2}$)dx,则(ax+$\frac{1}{2ax}$)9展开式中,x的一次项系数为(  )
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.10名学生干部(名单见表2)进行内部评优,每人根据评分标准为自己和其他人打分,分值取0到10的整数.对某名干部的得分xi(i=1,2,…,10)计算均值$\overline x$和标准差s,计区间$(\overline x-2s,\overline x+2s)$内的得分我“有效得分”,则这名干部的最终得分为其有效得分的平均分,最终得分最高的前4名干部评为优秀干部.
(1)表1为贝航的原始得分,请据此计算表2中a的值(保留两位小数),并判断贝航是否被评为了优秀干部;
(2)现从这十名干部中随机抽取3人前往香港大学进行为期两天的交流访问,设所选取的3人中女生人数为X,优秀干部人数为Y,求概率P(X≥1且Y≥1).
表1
姓名x1x2x3x4x5x6x7x8x9x10
贝航99108996997
表2
姓名贝航黄韦嘉李萱刘紫璇罗迪威王安国肖悦杨清源袁佳仪周紫薇
性别
最终得分a9.228.508.818.438.918.127.959.317.79
参考数据:$\sqrt{5}≈2.24$.

查看答案和解析>>

同步练习册答案