精英家教网 > 高中数学 > 题目详情
8.已知sinx-3cosx=$\sqrt{5}$,则tanx=(  )
A.-2或$\frac{1}{2}$B.2或-$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或-$\frac{1}{2}$

分析 由条件利用辅助角公式求得sin(x-ϕ)=$\frac{\sqrt{2}}{2}$,其中tanϕ=3(0<ϕ<$\frac{π}{2}$),可得x+ϕ的值,由此求得x的值,可得tanx的值.

解答 解:由sinx-3cosx=$\sqrt{5}$得:$\sqrt{10}$($\frac{1}{\sqrt{10}}$sinx-$\frac{3}{\sqrt{10}}$cosx)=$\sqrt{5}$,
从而$\sqrt{10}$sin(x-ϕ)=$\sqrt{5}$,解得:sin(x-ϕ)=$\frac{\sqrt{2}}{2}$,其中tanϕ=3(0<ϕ<$\frac{π}{2}$).
由sin(x-ϕ)=$\frac{\sqrt{2}}{2}$得:x-ϕ=2kπ+$\frac{π}{4}$,或x-ϕ=2kπ+$\frac{3π}{4}$,k∈Z,
即x=2kπ+$\frac{π}{4}$+ϕ,k∈Z,x=2kπ+$\frac{3π}{4}$+ϕ,k∈Z
所以tanx=tan(2kπ+$\frac{π}{4}$+ϕ)=tan($\frac{π}{4}$+ϕ)=$\frac{1+3}{1-1×3}$=-2,
或tanx=tan(2kπ+$\frac{3π}{4}$+ϕ)=tan($\frac{3π}{4}$+ϕ)=$\frac{-1+3}{1-(-1)×3}$=$\frac{1}{2}$.
故选:A.

点评 本题主要考查同角三角函数的基本关系,二倍角的正切公式的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\left\{\begin{array}{l}\frac{2}{x},x<-1\\-2,-1≤x<0\\ 3x-2,x≥0\end{array}$,
(1)在如图的坐标系中作出f(x)的图象;
(2)根据图象写出函数f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若△ABC中,AB=5,面积是10$\sqrt{3}$,A=60°,则BC边的是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n是不同的直线,α,β是不同的平面,则下列命题是假命题的是(  )
A.若m?α,n?α,m∥n,则n∥αB.若α⊥β,n?α,n⊥β,则n∥α
C.若α∥β,m?α,则m∥βD.若α⊥β,α∩β=n,m⊥n,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在下列命题中:其中正确命题的个数为0
①若$\overrightarrow a$、$\overrightarrow b$共线,则$\overrightarrow a$、$\overrightarrow b$所在的直线平行;
②$\overrightarrow a$、$\overrightarrow b$所在的直线是异面直线,则$\overrightarrow a$、$\overrightarrow b$定不共面;
③若$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三个向量两两共面,则$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三个向量一定也共面;
④已知三个向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$,则空间任意一个向量$\overrightarrow p$总可以唯一表示为$\overrightarrow p=x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0的等差数列{an}的首项a1为a(a∈R),且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较$\frac{1}{a_2}+\frac{1}{{a_{2^2}^{\;}}}+\frac{1}{{a_{2^3}^{\;}}}+…+\frac{1}{{a_{2^n}^{\;}}}$与$\frac{1}{a_1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知复数z1=3+i,z2=4+3i
(1)写出Z1的共轭复数,并求它的模
(2)求Z1•Z2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“-3<m<0”是“f(x)=x+log2x+m在区间($\frac{1}{2}$,2)上有零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列四个命题:
(1)给定两个命题p,q.若p是q的充分不必要条件,则¬p是¬q的必要不充分条件
(2)“(2x-1)x=0”的充分不必要条件是“x=0”.
(3)在△ABC中,“A=60°”是“cos A=$\frac{1}{2}$”的充分不必要条件.
(4)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,x∈R),则“f(x)是奇函数”是“φ=$\frac{π}{2}$”的充分必要条件. 
 其中正确命题的序号是(1)(2).

查看答案和解析>>

同步练习册答案