精英家教网 > 高中数学 > 题目详情
3.在下列命题中:其中正确命题的个数为0
①若$\overrightarrow a$、$\overrightarrow b$共线,则$\overrightarrow a$、$\overrightarrow b$所在的直线平行;
②$\overrightarrow a$、$\overrightarrow b$所在的直线是异面直线,则$\overrightarrow a$、$\overrightarrow b$定不共面;
③若$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三个向量两两共面,则$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三个向量一定也共面;
④已知三个向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$,则空间任意一个向量$\overrightarrow p$总可以唯一表示为$\overrightarrow p=x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$.

分析 逐个判断:向量是可自由平移的,命题①、②均不正确;举反例,可证③不正确,由空间向量基本定理,可知,命题④不正确.

解答 解:由于向量是可自由平移的,所以向量 $\overrightarrow a$、$\overrightarrow b$共线,不一定向量$\overrightarrow a$、$\overrightarrow b$所在的直线平行,故命题①不正确;
同样因为向量是可自由平移的,向量 $\overrightarrow a$、$\overrightarrow b$所在的直线为异面直线,则向量 $\overrightarrow a$、$\overrightarrow b$也可能共面,故命题②不正确;
三个向量 $\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$两两共面,如直角坐标系的三个基向量,它们不共面,故命题③不正确;
由空间向量基本定理,可知,只有当三个向量 $\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$,不共面的时候,由它们做基底,才有后面的结论,故命题④不正确.
即4个命题都不正确.
故答案是:0.

点评 本题为判断命题的真假,涉及向量共线与空间向量基本定理,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\frac{\sqrt{12-{x}^{4}}+{x}^{2}}{{x}^{3}}$+4,(x∈[-1,0)∪(0,1])的最大值为A,最小值为B,则A+B=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,D是边BC上一点,且$\overrightarrow{BD}=3\overrightarrow{DC},P$是线段AD上一个动点,若$\overrightarrow{|{AD}|}=2$,则$\overrightarrow{PA}•({\overrightarrow{PB}+3\overrightarrow{PC}})$的最小值是(  )
A.-8B.-4C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知(3+x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,则a9=(  )
A.20B.21C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在下列函数中,图象关于原点对称且对任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0的是(  )
A.y=xsinxB.y=$\frac{{e}^{x}+{e}^{-x}}{2}$C.y=ln$\frac{1-x}{1+x}$D.y=x3+x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinx-3cosx=$\sqrt{5}$,则tanx=(  )
A.-2或$\frac{1}{2}$B.2或-$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题正确的是(  )
A.单位向量都相等
B.长度相等且方向相反的两个向量不一定是共线向量
C.若$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|$>$|{\overrightarrow b}|$且$\overrightarrow a$与$\overrightarrow b$同向,则$\overrightarrow a$>$\overrightarrow b$
D.对于任意向量$\overrightarrow a$,$\overrightarrow b$,必有$|{\overrightarrow a+\overrightarrow b}|$≤$|{\overrightarrow a}|$+$|{\overrightarrow b}|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,四棱锥P-ABCD的底面为等腰梯形,AB∥DC,AB=2AD,若PA⊥平面ABCD,∠ABC=60°
(1)求证:平面PAC⊥平面PBC;
(2)若PA=AB,求平面PBC与平面PAD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.化简$\sqrt{1+2sin5cos5}+\sqrt{1-2sin5cos5}$,得到(  )
A.-2sin5B.-2cos5C.2sin5D.2cos5

查看答案和解析>>

同步练习册答案