| A. | $\frac{1}{2}{a^2}$ | B. | $\frac{1}{4}{a^2}$ | C. | $\frac{1}{8}{a^2}$ | D. | $\frac{{\sqrt{3}}}{8}{a^2}$ |
分析 由已知得|$\overrightarrow{AE}$|=|$\overrightarrow{DE}$|=$\frac{\sqrt{3}}{2}a$,|$\overrightarrow{AD}$|=a,$|\overrightarrow{AH}|$=$\frac{\sqrt{3}}{4}$a,$|\overrightarrow{AF}|=\frac{1}{2}a$,cos<$\overrightarrow{AH},\overrightarrow{AF}$>=$\frac{\sqrt{3}}{3}$,由此能求出$\overrightarrow{AH}•\overrightarrow{AF}$的值.
解答 解:
∵正四面体ABCD的棱长为a,点E,F,H分别是BC,AD,AE的中点,
∴|$\overrightarrow{AE}$|=|$\overrightarrow{DE}$|=$\sqrt{{a}^{2}-\frac{1}{4}{a}^{2}}$=$\frac{\sqrt{3}}{2}a$,|$\overrightarrow{AD}$|=a,$|\overrightarrow{AH}|$=a$\frac{\sqrt{3}}{4}$,$|\overrightarrow{AF}|=\frac{1}{2}a$,
∴cos<$\overrightarrow{AH},\overrightarrow{AF}$>=$\frac{{|\overrightarrow{AE}|}^{2}{+|\overrightarrow{AD}|}^{2}-|{\overrightarrow{DE}|}^{2}}{2•|\overrightarrow{AE}|•|\overrightarrow{AD}|}$=$\frac{\frac{3}{4}{a}^{2}+{a}^{2}-\frac{3}{4}{a}^{2}}{2•\frac{\sqrt{3}}{2}a•a}$=$\frac{\sqrt{3}}{3}$,
$\overrightarrow{AH}•\overrightarrow{AF}$=|$\overrightarrow{AH}$|•|$\overrightarrow{AF}$|•cos<$\overrightarrow{AH},\overrightarrow{AF}$>=$\frac{\sqrt{3}}{4}a×\frac{1}{2}a×\frac{\sqrt{3}}{3}$=$\frac{1}{8}{a}^{2}$.
故选:C.
点评 本题考查向量的数量积的求法,是基础题,解题时要认真审题,注意余弦定理和向量数量积公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [1,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,2] | D. | [$\frac{3}{2}$,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1+2i | B. | -1-2i | C. | 1-2i | D. | 1+2i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com