精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式+数学公式=1(a>b>0)的离心率为数学公式,右焦点到直线l1:3x+4y=0的距离为数学公式
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l2:y=kx+m(km≠0)与椭圆C交于A、B两点,且线段AB中点恰好在直线l1上,求△OAB的面积S的最大值.(其中O为坐标原点).

解:(Ⅰ)由右焦点到直线l1:3x+4y=0的距离为,得,解得c=1,
又e=,所以a=2,b2=a2-c2=3,
所以椭圆C的方程为
(Ⅱ)设A(x1,y1),B(x2,y2),把直线l2:y=kx+m代入椭圆方程得到:
(4k2+3)x2+8kmx+4m2-12=0,
因此
所以AB中点M(),
又M在直线l1上,得3×+=0,
因为m≠0,所以k=1,故
所以|AB|===
原点O到AB的距离为d=
得到S=,当且仅当m2=取到等号,检验△>0成立.
所以△OAB的面积S的最大值为
分析:(Ⅰ)由点到直线的距离公式可得,得c值,由离心率可得a值,再由b2=a2-c2可得b值;
(Ⅱ)设A(x1,y1),B(x2,y2),把直线l2:y=kx+m代入椭圆方程得到:(4k2+3)x2+8kmx+4m2-12=0,利用韦达定理及中点坐标公式可得AB中点横坐标,代入l2得纵坐标,由中点在直线l1上可求得k值,用点到直线的距离公式求得原点O到AB的距离为d,弦长公式求得|AB|,由三角形面积公式可表示出S△OAB,变形后用不等式即可求得其最大值;
点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查弦长公式、点到直线的距离公式及用不等式求函数最值,考查函数思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:+y2=1,则与椭圆C关于直线y=x成轴对称的曲线的方程是____________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案