精英家教网 > 高中数学 > 题目详情
已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x,    
(Ⅰ)求函数g(x)的解析式;    
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;    
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围。
解:(Ⅰ)设函数y=f(x)的图象上任意一点关于原点的对称点为P(x,y),

∵点在函数y=f(x)的图象上,
,即,故
(Ⅱ)由,可得
当x≥1时,,此时不等式无解;
当x<1时,,解得
因此,原不等式的解集为
(Ⅲ)
①当λ=-1时,在[-1,1]上是增函数,
∴λ=-1;
②当λ≠-1时,对称轴的方程为
ⅰ)当λ<-1时,,解得λ<-1;
ⅱ)当λ>-1时,,解得-1<λ≤0;
综上,λ≤0。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数.且当x<0时,f′(x)g(x)+f(x)g′(x)>0,g(-2)=0,则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于y轴对称,且f(x)=x2+
1
2
x
.则不等式g(x)≥f(x)-|x-4|的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)λ≠-1,若h(x)=g(x)-λf(x)+1在x∈[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且g(x)=-x2+2x.
(1)求函数f(x)的解析式;
(2)解不等式f(x)≤g(x)+|x-1|;
(3)若函数h(x)=f(x)+λ•g(x)+1在区间[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案