精英家教网 > 高中数学 > 题目详情
若圆(x-5)2+(y-1)2=r2上有且仅有两点到直线4x+3y+2=0的距离等于1,则r的取值范围为(  )
A、[4,6]
B、(4,6)
C、[5,7]
D、(5,7)
考点:直线与圆相交的性质
专题:计算题,直线与圆
分析:先求出圆心到直线的距离,将此距离和圆的半径结合在一起考虑,求出圆上有三个点到直线的距离等于1,以及
圆上只有一个点到直线的距离等于1的条件,可得要求的r的范围.
解答: 解:∵圆(x-5)2+(y-1)2=r2(r>0)的圆心到直线4x+3y+2=0的距离为:d=
|20+3+2|
5
=5,
当r=4时,圆上只有一个点到直线的距离等于1,当r=6时,圆上有三个点到直线的距离等于1,
∴圆(x-5)2+(y-1)2=r2上有且仅有两点到直线4x+3y+2=0的距离等于1时,
圆的半径r的取值范围是:4<r<6,
故选:B.
点评:本题考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数510151055
赞成人数469634

(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若loga(a+1)<0(a>0,且a≠1),则函数f(x)=
1
1-ax
的定义域为(  )
A、(-∞,0)
B、(-1,0)
C、(0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

我国城市空气污染指数范围及相应的空气质量类别见下表:

空气污染指数空气质量空气污染指数空气质量
0--50201--250中度污染
51--100251--300中度重污染
101--150轻微污染>300重污染
151----200轻度污染
我们把某天的空气污染指数在0-100时称作A类天,101--200时称作B类天,大于200时称作C类天.
下图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶)

(Ⅰ)从这18天中任取3天,求至少含2个A类天的概率;
(Ⅱ)从这18天中任取3天,记X是达到A类或B类天的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,定义域为{x|x∈R且x≠0},又f(x)在(0,+∞)上是增函数,且f(-1)=0,则不等式f(x)>0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2ωx-
π
3
)(ω>0)与g(x)=cos(2x+φ)(|φ|<
π
2
)有相同的对称中心.
(1)求f(x)的单调递增区间;
(2)将函数g(x)的图象向右平移
π
6
个单位,再向上平移1个单位,得到函数h(x)的图象,求函数h(x)在[-
π
3
π
3
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,已知a4+a5=8,则S8=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∠A=45°,∠B=75°,b=8,解这个三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=loga(4-ax)在[-1,2]上单调递减,则正实数a的取值范围是(  )
A、a>2
B、1<a<2
C、
1
4
<a<1,或1<a<2
D、以上都不对

查看答案和解析>>

同步练习册答案