分析 (1)假设10为数列{an}中的项,则an=n2-5n-14=10必有正整数解,解出即可判断出结论.
(2)an=n2-5n-14=$(n-\frac{5}{2})^{2}$-$\frac{81}{4}$,利用二次函数的单调性即可得出.
解答 解:(1)假设10为数列{an}中的项,则an=n2-5n-14=10必有正整数解,n∈N*,解得n=8.
∴10为数列{an}中的第8项.
(2)an=n2-5n-14=$(n-\frac{5}{2})^{2}$-$\frac{81}{4}$,
∴n=2或3时an取得最小值,a2=a3=22-5×2-14=-20.
点评 本题考查了数列的通项公式、方程的解法、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 高一学生被抽到的概率最大 | B. | 高三学生被抽到的概率最大 | ||
| C. | 高三学生被抽到的概率最小 | D. | 每位学生被抽到的概率相等 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在纵坐标不变时,横坐标伸长到原来的2倍 | |
| B. | 在纵坐标不变时,横坐标缩短到原来的$\frac{1}{2}$倍 | |
| C. | 在横坐标不变时,纵坐标伸长到原来的2倍 | |
| D. | 在横坐标不变时,纵坐标缩短到原来的$\frac{1}{2}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com