精英家教网 > 高中数学 > 题目详情
11.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≤1}\\{x+y≥0}\\{x-y+2≥0}\end{array}\right.$,则目标函数z=x+2y的最小值是(  )
A.7B.1C.-7D.-1

分析 作出不等式对应的平面区域,利用线性规划的∯知识,通过平移即可求z的最小值.

解答 解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点A时,
直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z最小.
由$\left\{\begin{array}{l}{x=1}\\{x+y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,即A(1,-1).
此时z的最小值为z=1+2×(-1)=-1,
故选:D.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=2x,则如图所示的函数图象(  )
A.y=f(|x|)B.y=-|f(x)|C.y=-f(-|x|)D.y=f(-|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.二项式(2x+3)12的展开式中系数最大的项的项数是:8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,a3+a5=10,{an}的前n项和为Sn,S3=15.
(1)求数列{an}的通项公式;
(2)设bn=($\frac{1}{2}$)n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等差数列{an}中,a1≠0,d≠0,且a1,a3,a4成等比数列,则$\frac{{a}_{3}+{a}_{4}}{{a}_{1}+{a}_{2}}$=$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=$\frac{1}{3}$时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)的对称轴?如果存在求出其对称轴,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.计算$\root{3}{96}$×18${\;}^{-\frac{2}{3}}$-$\sqrt{(2-π)^{2}}$的值为(  )
A.-$\frac{1}{2}$+πB.$\frac{5}{2}$-πC.$\frac{8}{3}$-πD.-$\frac{4}{3}$+π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${∫}_{-2}^{m}$$\sqrt{-{x}^{2}-2x}$dx=$\frac{π}{2}$,则m等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax3+bx2是奇函数,则实数b=0.

查看答案和解析>>

同步练习册答案