精英家教网 > 高中数学 > 题目详情
16.已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=$\frac{1}{3}$时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)的对称轴?如果存在求出其对称轴,若不存在,请说明理由.

分析 (1)根据三角函数的周期性,最值性,求出A,ω和φ的值的值即可求f(x)的解析式.
(2)求出函数的对称轴,解不等式即可.

解答 解:(1)∵函数的最小正周期为2,
∴$\frac{2π}{ω}$=2,即ω=π,
∵当x=$\frac{1}{3}$时,f(x)的最大值为2,
∴A=2,
此时f(x)=2sin(πx+φ),
且f($\frac{1}{3}$)=2sin(π×$\frac{1}{3}$+φ)=2,
即sin($\frac{1}{3}$π+φ)=1,
则$\frac{1}{3}$π+φ=2kπ+$\frac{π}{2}$,
即φ=2kπ+$\frac{π}{6}$,k∈Z
则f(x)=2sin(πx+2kπ+$\frac{π}{6}$)=2sin(πx+$\frac{π}{6}$).
(2)由πx+$\frac{π}{6}$=kπ+$\frac{π}{2}$,
得x=k+$\frac{1}{3}$,即函数的对称轴为x=k+$\frac{1}{3}$,
由$\frac{21}{4}$≤k+$\frac{1}{3}$≤$\frac{23}{4}$,
即$\frac{21}{4}$-$\frac{1}{3}$≤k≤$\frac{23}{4}$-$\frac{1}{3}$,
即$\frac{59}{12}$≤k≤$\frac{65}{12}$,
∵k∈Z,
∴k=5,
故在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是存在f(x)的对称轴.

点评 本题主要考查三角函数解析式的求解以及三角函数对称轴的求解,要求熟练掌握三角函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{{2{{cos}^2}(x-1)-x}}{x-1}$,其图象的对称中心是(  )
A.(-1,1)B.(1,-1)C.(1,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x2+ax+2,其中x∈R,a为常数,若f(1-x)=f(1+x),则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=2x的图象S0经过怎样的变换即可得到:
(1)y=22-x
(2)y=22-x-2;
(3)y=|22-x-2|的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≤1}\\{x+y≥0}\\{x-y+2≥0}\end{array}\right.$,则目标函数z=x+2y的最小值是(  )
A.7B.1C.-7D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.Sn为数列{an}的前n项和.已知an>0,a${\;}_{n}^{2}$+2an=4Sn+3
(I)求{an}的通项公式:
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和为Tn,求使不等式Tn>$\frac{k}{105}$对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)为二次函数,f(x-2)=f(-x-2),且f(0)=1,图象在x轴上截得的线段长为2$\sqrt{2}$,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设全集为R,集合A={x|-1≤x<3},B={x||x|≤2}.
(1)求A∪B,A∩B,∁R(A∩B);
(2)若集合C={x|-a<x<a-2},满足B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2ax+1,x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围是(-∞,0].

查看答案和解析>>

同步练习册答案