精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2ax+1,x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围是(-∞,0].

分析 若对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2ax+1,x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$为减函数,进而根据分段函数单调性的定义,可得答案.

解答 解:若对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
则函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2ax+1,x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$为减函数,
则$\left\{\begin{array}{l}-\frac{2a}{2}≥0\\ a-3<0\\ 1≥4a\end{array}\right.$,
解得:a∈(-∞,0],
故答案为:(-∞,0]

点评 本题考查的知识点是分段函数的应用,熟练掌握并正确理解分段函数单调性的定义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=$\frac{1}{3}$时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)的对称轴?如果存在求出其对称轴,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|-3<x≤2},B={x|-1≤x≤5}
(1)求A∩B,A∪B
(2)求A∩(∁RB),(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列叙述中错误的是(  )
①∅∈{∅};②∅?{0};③若A∩B=∅,则A=∅或B=∅;④A∪B=∅,则A=∅且B=∅;⑤Card(∅)=1.
A.①②④B.②③⑤C.③④D.③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax3+bx2是奇函数,则实数b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.条件p:x1是方程f(x)=0的一个根,或x1是方程g(x)=0的一个根;条件q:x1是方程f(x)•g(x)=0的一个根.则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=$\left\{\begin{array}{l}{|x-1|-2,|x|≤1}\\{\frac{1}{1+{x}^{2}},|x|>1}\end{array}\right.$,求f(3)和f(f($\frac{1}{2}$))的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{{x}^{2}-2x-8}$的定义域为A,g(x)=$\frac{1}{\sqrt{1-|x-a|}}$的定义域为B,若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn.若以a2,a4是方程x2-4x+3=0的两个根,则S5等于(  )
A.-20B.-10C.10D.20

查看答案和解析>>

同步练习册答案