精英家教网 > 高中数学 > 题目详情
5.设全集为R,集合A={x|-1≤x<3},B={x||x|≤2}.
(1)求A∪B,A∩B,∁R(A∩B);
(2)若集合C={x|-a<x<a-2},满足B∩C=C,求实数a的取值范围.

分析 (1)解不等式求出集合B,结合集合交集,并集,补集运算的定义,可得A∪B,A∩B,∁R(A∩B);
(2)若B∩C=C,则C⊆B,根据子集的定义,可求出实数a的取值范围.

解答 解:(1)∵集合A={x|-1≤x<3},B={x||x|≤2}={x|-2≤x≤2},
∴A∪B={x|-2≤x<3},
A∩B={x|-1≤x≤2},
R(A∩B)={x|x<-1,或x>2};
(2)∵B∩C=C,
∴C⊆B,
当-a≥a-2,即a≤1时,C=∅满足条件;
当-a<a-2,即a>1时,C≠∅,
若C⊆B,则$\left\{\begin{array}{l}-a≥-2\\ a-2≤2\end{array}\right.$,
解得:1<a≤2
综上所述实数a的取值范围为(-∞,2]

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=${(\frac{1}{2})}^{lnx}$-|lnx-2|的所有零点之积为m,则m所在的区间为(  )
A.(1,e)B.(e,e2C.(e2,e3D.(e3,e4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=$\frac{1}{3}$时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)的对称轴?如果存在求出其对称轴,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)是定义在(-1,1)上的增函数,且f(a-2)-f(3-a)<0,那么a的取值范围是(2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${∫}_{-2}^{m}$$\sqrt{-{x}^{2}-2x}$dx=$\frac{π}{2}$,则m等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给定下列四组函数:
①f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$;
②f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2
③f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1;
④f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$
其中表示同一函数的是①(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|-3<x≤2},B={x|-1≤x≤5}
(1)求A∩B,A∪B
(2)求A∩(∁RB),(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列叙述中错误的是(  )
①∅∈{∅};②∅?{0};③若A∩B=∅,则A=∅或B=∅;④A∪B=∅,则A=∅且B=∅;⑤Card(∅)=1.
A.①②④B.②③⑤C.③④D.③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{{x}^{2}-2x-8}$的定义域为A,g(x)=$\frac{1}{\sqrt{1-|x-a|}}$的定义域为B,若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案