精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lgan,b3=18,b6=12,则数列{bn}前n项和的最大值等于(  )
A、126B、130C、132D、134
分析:由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,进而求得q和a1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.
解答:解:由题意可知,lga3=b3,lga6=b6
又∵b3=18,b6=12,则a1q2=1018,a1q5=1012
∴q3=10-6
即q=10-2,∴a1=1022
又∵{an}为正项等比数列,
∴{bn}为等差数列,
且d=-2,b1=22.
故bn=22+(n-1)×(-2)=-2n+24.
∴Sn=22n+
n(n-1)
2
×(-2)
=-n2+23n=-(n-
23
2
)
2
+
529
4
.又∵n∈N*,故n=11或12时,(Snmax=132.
点评:本题主要考查了等比数列的性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案