精英家教网 > 高中数学 > 题目详情
(2011•江西模拟)已知函数f(x)=2
3
sinxcosx+2cos2x-1
(x∈R).若f(x0)=
6
5
x0∈[
π
4
π
2
]
.求cos2x0的值.
分析:将函数化简为y=Asin(ωx+φ)的形式,把x0代入化简后的函数解析式可得到sin(2x0+
π
6
)=
3
5
,再根据x0的范围可求出cos(2x0+
π
6
)的值,利用cos2x0=cos[(2x0+
π
6
)-
π
6
],我们就可以得出结论
解答:解:函数f(x)=2
3
sinxcosx+2cos2x-1
=
3
(2sinxcosx)+(2cos2x-1)=
3
sin2x+cos2x=2sin(2x+
π
6

因为f(x0)=
6
5
,所以sin(2x0+
π
6
)=
3
5

由x0∈[
π
4
π
2
],得2x0+
π
6
∈[
3
6
]
从而cos(2x0+
π
6
)=-
1-sin2(2x0+
π
6
)
=-
4
5

所以cos2x0=cos[(2x0+
π
6
)-
π
6
]=cos(2x0+
π
6
)cos
π
6
+sin(2x0+
π
6
)sin
π
6
=
3-4
3
10
点评:本题主要考查二倍角的正弦与余弦、辅助角公式、函数y=Asin(ωx+φ)的性质、同角三角函数的基本关系、两角差的余弦等基础知识,利用2x0=(2x0+
π
6
)-
π
6
是我们思维的亮点所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江西模拟)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=
3
bc
sinC=2
3
sinB
,则A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
1
Sn
}的前n项和Tn
③设Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an}满足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通项公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求证:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)设a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
满足f(-
π
3
)=f(0)

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步练习册答案