精英家教网 > 高中数学 > 题目详情
已知F(c,0)是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,圆F:(x-c)2+y2=a2与x轴交于E,D两点,B是椭圆C与圆F的一个交点,且|BD|=
3
×|BE|.
(1)求椭圆C的离心率;
(2)过点B与圆F相切的直线l与C的另一交点为A,且△ABD的面积等于24×
6
×
c
13
,求椭圆C的方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由题设条件推导出△BED是直角三角形,△BEF是等边三角形,由此能求出椭圆C的离心率.
(2)由切线性质推导出BF⊥BG,在Rt△BFG中,∠3=30°,直线BG为:y=
3
3
x+
3
c
,从而得到yA=
5
3
13
c
,OD=OG=3c,GD=6c,由此能求出椭圆C的方程.
解答: 解:(1)如图,∵EF=BF=DF=a,|BD|=
3
×|BE|,
∴△BED是直角三角形,∠1=60°,
∵BF=EF,∴△BEF是等边三角形,
∴BF=2OF,
∵OF=c,BF=a,
∴e=
c
a
=
1
2

(2)∵过点B与圆F相切的直线l与C的另一交点为A,
∴BF⊥BG,∴在Rt△BFG中,∠3=30°,
∵B(0,
3c
),kBG=
3
3
,∴直线BG为:y=
3
3
x+
3
c

x2
4c2
+
y2
3c2
=1
y=
3
3
x+
3
c

解得yA=
5
3
13
c

∵FD=a=2c,∴OD=OG=3c,∴GD=6c,
∵S△ABD=S△BDG-S△ADG
24
6
13
c=
1
2
GD(BO-yA)
=
1
2
×6c(
3
c-
5
3
13
c)

∴c=
2
,∴a2=8,b2=6,
∴椭圆C的方程为:
x2
8
+
y2
6
=1
点评:本题考查椭圆的离心率和椭圆方程的求法,是中档题,解题时要注意圆的性质和数形结合思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+6≥0
x+y≥0
x≤3.
,若z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围为(  )
A、[-1,1]
B、[-1,2]
C、[2,3]
D、[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x<0},B={x||x-2|<1},则“a∈A”是“a∈B”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)左焦点F1(-c,0)作倾斜角为30°的直线L交双曲线右支于点P,线段PF1的中点在y轴上,双曲线右焦点F2(c,0)到双曲线的渐近线的距离是2.
(Ⅰ)求双曲线的方程;   
(Ⅱ)设以F1F2为直径的圆与直线L交于点Q,过右焦点F2和点Q的直线L′与双曲线交于A、B两点,求弦|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(
3
,-
3
2
)
,且椭圆的离心率e=
1
2
,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A、B及C、D.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:
1
|AB|
+
1
|CD|
为定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C的两个焦点分别为F1(-1,0)、F2(1,0),且F2到直线x-
3
y-9=0的距离等于椭圆的短轴长.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P的圆心为P(0,t)(t>0),且经过F1、F2,Q是椭圆C上的动点且在圆P外,过Q作圆P的切线,切点为M,当|QM|的最大值为
3
2
2
时,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的右焦点为F1(3,0),设直线y=kx与椭圆相交于A、B两点,M、N分别为线段AF1,BF1的中点,若坐标原点O在以MN为直径的圆上,请运用椭圆的几何性质证明线段|AB|的长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点,B是短轴的一个端点,线段BF的延长线交椭圆于点D,且
BF
=
5
3
FD

(Ⅰ)求椭圆的离心率;
(Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx.
(Ⅰ)令f1(x)=f(x),fn+1(x)=
f
n
(x),(n∈N*)
,求f2014(x)的解析式; 
(Ⅱ)若f(x)+1≥ax+cosx在[0,π]上恒成立,求实数a的取值范围;
(Ⅲ)证明:f(
π
2n+1
)+f(
2n+1
)+…+f(
(n+1)π
2n+1
)≥
3
2
(n+1)
4(2n+1)

查看答案和解析>>

同步练习册答案