精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1的右焦点为F1(3,0),设直线y=kx与椭圆相交于A、B两点,M、N分别为线段AF1,BF1的中点,若坐标原点O在以MN为直径的圆上,请运用椭圆的几何性质证明线段|AB|的长是定值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:由椭圆的对称性知|OA|=|OB|,由已知条件推导出OM⊥ON,四边形ONF1M是平行四边形,由此能证明线段|AB|的长是定值.
解答: 证明:∵椭圆
x2
a2
+
y2
b2
=1
=1的右焦点为F1(3,0),
直线y=kx与椭圆相交于A、B两点,
∴由椭圆的对称性知|OA|=|OB|,
∵M、N分别为线段AF1,BF1的中点,
坐标原点O在以MN为直径的圆上,
∴OM⊥ON,OM∥NF1,ON∥MF1
∴四边形ONF1M是平行四边形,
∴∠NF1M=90°,即∠AF1B=90°,
∴|AB|=2|OF1|=2×3=6,
∴线段|AB|的长是定值6.
点评:本题考查线段长为定值的证明,是中档题,解题时要注意数形结合思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“实数a=1”是“复数(1+ai)i(a∈R,i为虚数单位)的模为
2
”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既不是充分条件又不是必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=x2在点(n,n2)处的切线方程为
x
an
-
y
bn
=1,其中n∈N*
(1)求an,bn关于n的表达式;
(2)设Cn=
1
an+bn
,求证:c1+c2+…+cn
4
3

(3)设dn=
4an
λ•4an+1-λ
,其中0<λ<1,求证:d1+d2+…+dn
nλ+λ-1
λ2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(c,0)是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,圆F:(x-c)2+y2=a2与x轴交于E,D两点,B是椭圆C与圆F的一个交点,且|BD|=
3
×|BE|.
(1)求椭圆C的离心率;
(2)过点B与圆F相切的直线l与C的另一交点为A,且△ABD的面积等于24×
6
×
c
13
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-xlnx,
(1)若a=0,求函数f(x)的单调区间;
(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的对称轴为坐标轴,左、右两个焦点分别为F1、F2,且抛物线y2=4
3
x与该椭圆有一个共同的焦点,点P在椭圆C上,且PF2⊥F1F2,|PF1|=
7
2

(1)求椭圆C的方程;
(2)设D(
3
2
,0),过F2且不垂直于坐标轴的动直线l交椭圆C于A、B两点,若以DA、DB为邻边的平行四边形为菱形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1
ex
(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+
1
ex
,存在函数x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-2ax+a2)lnx,a∈R,
(1)当a=0时,求函数f(x)的单调区间;
(2)当a=-1时,令F(x)=
f(x)
x+1
+x-lnx,证明:F(x)≥-e-2,其中e为自然对数的底数;
(3)若函数f(x)不存在极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆M:
x2
a2
+
y2
b2
=1
(a>0,b>0)的离心率为
2
2
,且经过点P(1,
2
2
).过坐标原点的直线l1与l2均不在坐标轴上,l1与椭圆M交于A,C两点,l2与椭圆M交于B,D两点.
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD面积的最小值.

查看答案和解析>>

同步练习册答案