精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+1
ex
(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+
1
ex
,存在函数x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求实数t的取值范围.
考点:导数在最大值、最小值问题中的应用
专题:综合题,导数的综合应用
分析:(1)确定函数的定义域,求导数.利用导数的正负,可得函数f(x)的单调区间;
(2)假设存在x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,则2φ(x)min<φ(x)max.分类讨论求最值,即可求实数t的取值范围.
解答: 解:(1)∵函数的定义域为R,f′(x)=-
x
ex
….(2分)
∴当x<0时,f′(x)>0,当x>0时,f′(x)<0.
∴f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.….(4分)
(2)假设存在x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,则2φ(x)min<φ(x)max
∵φ(x)=xf(x)+tf′(x)+
1
ex
=
x2+(1-t)x+1
ex

∴φ′(x)=
-(x-t)(x-1)
ex
…(6分)
①当t≥1时,φ′(x)≤0,φ(x)在[0,1]上单调递减,∴2φ(1)<φ(0),即t>3-
e
2
>1.….(8分)
②当t≤0时,φ′(x)>0,φ(x)在[0,1]上单调递增,∴2φ(0)<φ(1),即t<3-2e<0.….(10分)
③当0<t<1时,
在x∈[0,t),φ′(x)<0,φ(x)在[0,t]上单调递减
在x∈(t,1],φ′(x)>0,φ(x)在[t,1]上单调递增
∴2φ(t)<max{φ(0),φ(1)},即2•
t+1
et
<{1,
3-t
e
}(*)
由(1)知,g(t)=2•
t+1
et
在[0,1]上单调递减
4
e
≤2•
t+1
et
≤2,而
2
e
3-t
e
3
e

∴不等式(*)无解
综上所述,存在t∈(-∞,3-2e)∪(3-
e
2
,+∞),使得命题成立.…(12分)
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x,y满足约束条件
y+x≤1
y-3x≤1
y-x≥-1
,则目标函数z=2x+y的最大值是(  )
A、-3
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(
3
,-
3
2
)
,且椭圆的离心率e=
1
2
,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A、B及C、D.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:
1
|AB|
+
1
|CD|
为定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的右焦点为F1(3,0),设直线y=kx与椭圆相交于A、B两点,M、N分别为线段AF1,BF1的中点,若坐标原点O在以MN为直径的圆上,请运用椭圆的几何性质证明线段|AB|的长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,P是椭圆E上的点,以F1P为直径的圆经过F2
PF1
PF2
=
1
16
a2
.直线l经过F1,与椭圆E交于A、B两点,F2与A、B两点构成△ABF2
(1)求椭圆E的离心率;
(2)设△F1PF2的周长为2+
3
,求△ABF2的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点,B是短轴的一个端点,线段BF的延长线交椭圆于点D,且
BF
=
5
3
FD

(Ⅰ)求椭圆的离心率;
(Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(Ⅱ)设m=2,过点D(0,4)的直线l与曲线C交于M,N两点,O为坐标原点,若∠OMN为直角,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,0)及椭圆C:x2+16y2=16.
(Ⅰ)过点P的直线l1与椭圆交于M、N两点,且|MN|=
3
,求以线段MN为直径的圆Q的方程;
(Ⅱ)设直线kx-y+1=0与椭圆C交于A,B两点,是否存在实数k,使得过点P的直线l2垂直平分弦AB?若存在,求出实数k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下四个命题:
①函数f(x)=sin(
π
3
-2x)的一个增区间是[
12
11π
12
];
②函数f(x)=sin(ωx+φ)为奇函数,则φ为π的整数倍;
③对于函数f(x)=tan(2x+
π
3
),若f(x1)=f(x2),则x1-x2必是π的整数倍;
④y=|sinx|最小正周期为π;
其中正确的命题是
 
.(填上正确命题的序号)

查看答案和解析>>

同步练习册答案