精英家教网 > 高中数学 > 题目详情
已知F1、F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,P是椭圆E上的点,以F1P为直径的圆经过F2
PF1
PF2
=
1
16
a2
.直线l经过F1,与椭圆E交于A、B两点,F2与A、B两点构成△ABF2
(1)求椭圆E的离心率;
(2)设△F1PF2的周长为2+
3
,求△ABF2的面积S的最大值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由题意,F2P⊥x轴,利用
PF1
PF2
=
1
16
a2
,可得|F1P|=
7
4
a,结合勾股定理,即可求椭圆E的离心率;
(2)根据△F1PF2的周长为2+
3
,求出椭圆的方程,设出AB方程代入椭圆方程,整理,利用韦达定理,表示出三角形的面积,换元,即可求△ABF2的面积S的最大值.
解答: 解:(1)由题意,F2P⊥x轴,
PF1
PF2
=
1
16
a2

∴由向量的数量积公式可得|F2P|=
a
4

∴|F1P|=
7
4
a,
∴(
7
4
a)2=(
a
4
2+(2c)2
∴e=
c
a
=
3
2

(2)∵△ABF2的周长为2+
3

∴2a+2c=2+
3

c
a
=
3
2

∴a=1,c=
3
2

∴b=
1
2

∴椭圆的方程为x2+
y2
1
4
=1

设A(x1,y1),B(x2,y2),
斜率不存在时,方程为x=-
3
2
,∴△ABF2的面积为
3
4
,.
斜率存在时,设AB方程为y=k(x+
3
2
),
代入椭圆方程,整理可得(1+4k2)x2+4
3
k2x+3k2-1=0,
∴x1+x2=-
4
3
k2
1+4k2
,x1x2=
3k2-1
1+4k2

∴△ABF2的面积为S=
1
2
|F1F2||y1-y2|=
3
k2+1
1+4k2
•|k|,
令t=k2+1(t≥1),则S2=
3t(t-1)
(4t-3)2

令m=4t-3(m≥1),则S2=-
9
16
(
1
m
-
1
3
)2
+
1
4

当且仅当m=3,即k=±
2
2
时取等号,
∴△ABF2的面积的最大值为
1
2

综上,△ABF2的面积的最大值为
1
2
点评:本题考查椭圆的几何性质,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b均为正实数,定义a?b=a(a-b),若x?2013=2014,则x的值为(  )
A、1B、2013
C、2014D、-1或2014

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0),其准线方程为x=-1,过准线与x轴的交点M做直线l交抛物线于A、B两点.
(Ⅰ)若点A为MB中点,求直线l的方程;
(Ⅱ)设抛物线的焦点为F,当AF⊥BF时,求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-xlnx,
(1)若a=0,求函数f(x)的单调区间;
(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在学习完统计学知识后,两位同学对所在年级的1200名同学一次数学考试成绩作抽样调查,两位同学采用简单随机抽样方法抽取100名学生的成绩,并将所选的数学成绩制成如统计表,设本次考试的最低期望分数为90分,优等生最低分130分,并且考试成绩分数在[85,90)的学生通过自身努力能达到最低期望分数.
(Ⅰ)求出各分数段的频率并作出频率分布直方图;
(Ⅱ)用所抽学生的成绩在各个分数段的频率表示概率,请估计该校学生数学成绩达到最低期望的学生分数和优等生人数;
(Ⅲ)设考试成绩在[85,90)的学生成绩如下:80,81,83,84,86,89,从分数在[85,90)的学生中抽取2人出来检查数学知识的掌握情况,记所抽取学生中通过自身努力达到最低期望分数的人数为ξ,求ξ的分布列和期望.
分数段 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
人数 9 6 12 18 21 16 12 6
频率

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1
ex
(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+
1
ex
,存在函数x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+bx的图象在点(
π
3
,f(
π
3
))
处的切线方程为x+2y-
3
+
π
3
=0

(Ⅰ)求实数a,b的值;
(Ⅱ)当0<x<
π
2
时,f(x)>(m-1)x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设计一个计算2+4+6+…+100的程序框图和程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x+y+5≥0
x-y≤0
y≤0
,则z=3x+4y的最小值是
 

查看答案和解析>>

同步练习册答案