精英家教网 > 高中数学 > 题目详情
若x,y满足约束条件
y+x≤1
y-3x≤1
y-x≥-1
,则目标函数z=2x+y的最大值是(  )
A、-3
B、
3
2
C、2
D、3
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A(1,0)时,直线的截距最大,此时z最大.
y+x=1
y-x=-1
,解得
x=1
y=0

即A(1,0),此时zmax=2×1+0=2,
故选:C
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2014x+log2014x,则在R上,函数f(x)零点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l、m与平面α、β,l?α,m?β,则下列命题中正确的是
 
(填写正确命题对应的序号).
①若l∥m,则α∥β;
②若l⊥m,则α⊥β;
③若l⊥β,则α⊥β;
④若α⊥β,则m⊥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

“实数a=1”是“复数(1+ai)i(a∈R,i为虚数单位)的模为
2
”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既不是充分条件又不是必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b均为正实数,定义a?b=a(a-b),若x?2013=2014,则x的值为(  )
A、1B、2013
C、2014D、-1或2014

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)两个具有公共终点的向量,一定是共线向量.
(2)两个向量不能比较大小,但它们的模能比较大小.
(3)λ
a
=0(λ为实数),则λ必为零.
(4)λ,μ为实数,若λ
a
b
,则
a
b
共线.
其中错误的命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1,若存在过右焦点F的直线与双曲线C相交于A,B 两点且
AF
=3
BF
,则双曲线离心率的最小值为(  )
A、
2
B、
3
C、2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=x2在点(n,n2)处的切线方程为
x
an
-
y
bn
=1,其中n∈N*
(1)求an,bn关于n的表达式;
(2)设Cn=
1
an+bn
,求证:c1+c2+…+cn
4
3

(3)设dn=
4an
λ•4an+1-λ
,其中0<λ<1,求证:d1+d2+…+dn
nλ+λ-1
λ2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1
ex
(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+
1
ex
,存在函数x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案