精英家教网 > 高中数学 > 题目详情
已知直线l、m与平面α、β,l?α,m?β,则下列命题中正确的是
 
(填写正确命题对应的序号).
①若l∥m,则α∥β;
②若l⊥m,则α⊥β;
③若l⊥β,则α⊥β;
④若α⊥β,则m⊥α.
考点:空间中直线与平面之间的位置关系,平面与平面之间的位置关系
专题:综合题,空间位置关系与距离
分析:①②列举反例,③利用面面垂直的判定定理,④利用面面垂直的性质定理,即可判断.
解答: 解:①α∩β=n,l∥m∥n,故①不正确;
②α∩β=n,m∥n,l⊥n,则l⊥m,故②不正确;
③由面面垂直的判定定理,若l⊥β,则α⊥β,故③正确;
④若α⊥β,α∩β=n,由面面垂直的性质定理知,m⊥n时,m⊥α,故④不正确.
故答案为:③.
点评:本题考查空间线面位置关系,考查面面垂直的判定定理与性质定理,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列说法:
①Sn是数列{an}的前n项和,若Sn=n2+n+1,则数列{an}是等差数列;
②若实数x,y满足x2+y2=4,则
xy
x+y-2
的最小值是1-
2

③在△ABC中,a,b,c分别是角A、B、C的对边,若acosA=bcosB,则△ABC 为等腰直角三角形;
④△ABC中,“A>B”是“sinA>sinB”的充要条件.
其中正确的有
 
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x,y)满足
x≥1
x-y+1≥0
2x-y-2≤0
,则
2x+y
2x+6
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是
 
(写出所有正确命题的编号).
①若ab>c2,则C<
π
3
;    
②若(a+b)c<2ab,则C>
π
2

③若a3+b3=c3,则C<
π
2

④若a+b>2c,则C<
π
3

⑤若(a2+b2)c2<2a2b2,则C>
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中真命题为
 

①“?x0∈R,使得x02+1>3x0”的否定是“?x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点,分别为A(x1,0),B(x2,0),C(0,y1),D(0,y2),则x1x2-y1y2=0;
④函数f(x)=sinx-x的零点个数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+6≥0
x+y≥0
x≤3.
,若z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围为(  )
A、[-1,1]
B、[-1,2]
C、[2,3]
D、[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-1≤0
3x-y+1≥0
x-y-1≤0
,若z=mx+y仅在点(1,0)处取得最大值,则实数m的取值范围是(  )
A、(1,+∞)
B、(-1,+∞)
C、(-∞,1)
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足约束条件
y+x≤1
y-3x≤1
y-x≥-1
,则目标函数z=2x+y的最大值是(  )
A、-3
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(
3
,-
3
2
)
,且椭圆的离心率e=
1
2
,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A、B及C、D.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:
1
|AB|
+
1
|CD|
为定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

同步练习册答案