精英家教网 > 高中数学 > 题目详情

无穷数列{}中,(n∈N),则该数列中所有实数项之和为

[  ]

A.1
B.
C.
D.
答案:B
解析:

,∴{}是等比数列.若∈R,则sin=0,n=3k(k∈N).所有实数项组成等比数列,其首项是,公比,∴所有实数项之和为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…a2m是首项为
1
2
,公比为
1
2
的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2m=an成立.
(1)当m=12时,求a2010
(2)若a52=
1
128
,试求m的值;
(3)判断是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、若在由正整数构成的无穷数列{an}中,对任意的正整数n,都有an≤an+1,且对任意的正整数k,该数列中恰有2k-1个k,则a2008=
45

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区二模)已知无穷数列{an}中,a1,a2,…,am是以10为首项,以-2为公差的等差数列;am+1,am+2,…,a2m是以
1
2
为首项,以
1
2
为公比的等比数列(m≥3,m∈N*);并且对一切正整数n,都有an+2m=an成立.
(1)当m=3时,请依次写出数列{an}的前12项;
(2)若a23=-2,试求m的值;
(3)设数列{an}的前n项和为Sn,问是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)已知无穷数列{an}中,a1,a2,…,an是首项为10,公差为-2的等差数列;an+1,an+2,…,a2n是首项为
1
2
,公比为
1
2
的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2n=an成立.
(1)当m=12时,求a2012
(2)若a52=
1
128
,试求m的值;
(3)判断是否存在m,使S128m+3≥2012成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区一模)以下四个命题中,真命题的个数为(  )
①集合{a1,a2,a3,a4}的真子集的个数为15;
②平面内两条直线的夹角等于它们的方向向量的夹角;
③设z1,z2∈C,若
z
2
1
+
z
2
2
=0
,则z1=0且z2=0;
④设无穷数列{an}的前n项和为Sn,若{Sn}是等差数列,则{an}一定是常数列.

查看答案和解析>>

同步练习册答案