精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,椭圆短轴的一个端点与两个焦点构成的三角形的面积为$\frac{5\sqrt{2}}{3}$.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点,点M(-$\frac{7}{3}$,0),求证:$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值.

分析 (1)根据椭圆的性质列方程解出a,b;
(2)联立方程组消元,得出A,B坐标的关系,代入向量的数量积公式计算即可.

解答 解:(1)由题意得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}-{b}^{2}={c}^{2}}\\{\frac{1}{2}×2c×b=\frac{5\sqrt{2}}{3}}\end{array}\right.$,解得a2=5,b2=$\frac{5}{3}$,
∴椭圆方程为$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{\frac{5}{3}}=1$.
(2)将y=k(x+1)代入$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{\frac{5}{3}}=1$,得(1+3k2)x2+6k2x+3k2-5=0,
设A(x1,y1),B(x2,y2),则x1+x2=-$\frac{6{k}^{2}}{3{k}^{2}+1}$,x1x2=$\frac{3{k}^{2}-5}{3{k}^{2}+1}$.
∴y1y2=k2(x1+1)(x2+1)=k2x1x2+k2(x1+x2)+k2
∵$\overrightarrow{MA}$=(x1+$\frac{7}{3}$,y1),$\overrightarrow{MB}$=(x2+$\frac{7}{3}$,y2),
∴$\overrightarrow{MA}•\overrightarrow{MB}$=(x1+$\frac{7}{3}$)(x2+$\frac{7}{3}$)+y1y2=(1+k2)x1x2+($\frac{7}{3}$+k2)(x1+x2)+$\frac{49}{9}$+k2
=(1+k${\;}^{{\;}^{2}}$)•$\frac{3{k}^{2}-5}{3{k}^{2}+1}$-($\frac{7}{3}$+k2)•$\frac{6{k}^{2}}{3{k}^{2}+1}$+$\frac{49}{9}$+k2
=$\frac{-3{k}^{4}-16{k}^{2}-5}{3{k}^{2}+1}$+$\frac{49}{9}$+k2
=$\frac{4}{9}$.

点评 本题考查了椭圆的性质,直线与椭圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c-b)cosA.
(1)求sinA;
(2)若a=2$\sqrt{2}$,且△ABC的面积为$\sqrt{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在复平面内,△AOB中,O是原点,点A,B对应的复数分别为z1,z2,且z1,z2满足以下条件:
(1)|z1-3|=1,
(2)z2=(-1+i)z1;求△AOB面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=3,1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,则b+c的最大值为(  )
A.3B.6C.9D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,若该几何体的体积为20,则该几何体的表面积为(  )
A.72B.78C.66D.62

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.根据如图的程序框图,当输入x为2017时,输出的y=(  )
A.28B.10C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某几何体的正(主)视图与侧(左)视图都是直角边长为1的等腰直角三角形,且体积为$\frac{1}{3}$,则该几何体的俯视图可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在半圆x2+y2=4(y≥0)上任取一点P,则点P的横坐标小于1的概率是(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点P1(1,3),P2(4,-6),P是直线P1P2上的一点,且$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$,那么点P的坐标为(3,-3).

查看答案和解析>>

同步练习册答案