精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=3,1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,则b+c的最大值为(  )
A.3B.6C.9D.36

分析 利用和差公式、正弦定理可得A,再利用和差公式、三角函数的单调性值域即可得出.

解答 解:∵1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,∴1+$\frac{sinAcosB}{cosAsinB}$=$\frac{sin(A+B)}{cosAsinB}$=$\frac{sinC}{cosAsinB}$=$\frac{c}{bcosA}$=$\frac{2c}{b}$,可得cosA=$\frac{1}{2}$,A∈(0,π),∴$A=\frac{π}{3}$.
∴$\frac{a}{sinA}$=2$\sqrt{3}$=$\frac{b}{sinB}=\frac{c}{sinC}$,
∴b+c=$2\sqrt{3}$(sinB+sinC)
=$2\sqrt{3}$(sinB+sin$(\frac{2π}{3}-B)$)
=6sin$(B+\frac{π}{6})$,
B+$\frac{π}{6}$∈$(\frac{π}{6},\frac{5π}{6})$,
∴b+c≤6,当且仅当B=$\frac{π}{3}$=C时取等号.
故选;B.

点评 本题考查了和差公式、正弦定理、三角函数的单调性值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设{an}是首项为9的等差数列,{bn}是首项为1的等比数列,cn=an+bn,n∈N*.C2=10,C3=11,求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{1}{2}$,点F1,F2是椭圆E的左、右焦点,过定点Q(0,2)的动直线l与椭圆E交于A,B两点,当F1,A,B共线时,△F2AB的周长为8.
(1)求椭圆E的标准方程;
(2)设弦AB的中点为D,点E(0,t)在y轴上,且满足DE⊥AB,试求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长都为1),则该多面体的体积为$\frac{5}{6}$,表面积为$\frac{9+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞),(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,请将f(-2),f(1),f(3)按从小到大排序f(3)<f(-2)<f(1),.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{-2x,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$,若函数g(x)=f(x)-a恰有三个互不相同的零点x1,x2,x3,则x1x2x3的取值范围是(  )
A.(-$\frac{1}{32}$,0)B.(-$\frac{1}{16}$,0)C.(0,$\frac{1}{32}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,椭圆短轴的一个端点与两个焦点构成的三角形的面积为$\frac{5\sqrt{2}}{3}$.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点,点M(-$\frac{7}{3}$,0),求证:$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合M={(x,y)|x2+y2=1},N={(x,y)|x-y=0},那么M∩N的子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-a(x-1)
(1)若函数f(x)在(1,+∞)是单调减函数,求实数a的取值范围;
(2)在(1)的条件下,当n∈N*时,证明:(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{3}}$)…(1+$\frac{1}{{2}^{n}}$)<e(其中(e≈2.718…即自然对数的底数)

查看答案和解析>>

同步练习册答案