精英家教网 > 高中数学 > 题目详情
6.在复平面内,△AOB中,O是原点,点A,B对应的复数分别为z1,z2,且z1,z2满足以下条件:
(1)|z1-3|=1,
(2)z2=(-1+i)z1;求△AOB面积的最大值和最小值.

分析 (1)利用已知条件判断复数z1的轨迹;(2)利用复数的乘法的几何意义,求出∠AOB,表示出三角形的面积,然后求解最值即可.

解答 解:在复平面内,△AOB中,O是原点,点A,B对应的复数分别为z1,z2,且z1,z2满足以下条件:
(1)|z1-3|=1,可得复数z1是复平面,以(3,0)为圆心,以1为半径的圆.|z1|的最小值为:2,最大值为:4.
(2)z2=(-1+i)z1=$\sqrt{2}$(cos$\frac{3π}{4}$+isin$\frac{3π}{4}$)z1,可知$\overrightarrow{O{Z}_{1}}$与$\overrightarrow{O{Z}_{2}}$的夹角为:$\frac{3π}{4}$,即:∠AOB=$\frac{3π}{4}$.
△AOB面积为:$\frac{1}{2}$|z1||z2|sin$\frac{3π}{4}$=$\frac{\sqrt{2}}{2}$|z1|2×$\frac{\sqrt{2}}{2}$=$\frac{1}{2}$|z1|2∈[2,8]
可得△AOB面积的最大值和最小值分别为:8,2.

点评 本题考查复数的几何意义,轨迹方程的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.海滨某城市A附近海面上有一台风,在城市A测得该台风中心位于方位角150°、距离400km的海面P处,并正以70km/h的速度沿北偏西60°的方向移动,如果台风侵袭的范围是半径为250km的圆形区域.
(1)几小时后该城市开始受到台风侵袭?
(2)该台风将持续影响该城市多长时间?
(参考数据:$\sqrt{3}≈1.73$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知三个不等式①|2x-4|<5-x;②$\frac{x+2}{{x}^{2}-3x+2}$≥1;③2x2+mx-1<0.
(1)若同时满足①、②的x的值以满足③,求实数m的取值范围;
(2)若不等式③的解集非空也满足③的x至少满足①和②中的一个,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{1}{2}$,点F1,F2是椭圆E的左、右焦点,过定点Q(0,2)的动直线l与椭圆E交于A,B两点,当F1,A,B共线时,△F2AB的周长为8.
(1)求椭圆E的标准方程;
(2)设弦AB的中点为D,点E(0,t)在y轴上,且满足DE⊥AB,试求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的函数f(x)=ax3+bx2+cx+d同时满足以下条件:
①f(x) 在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)的图象在x=0处的切线与直线y=x+2垂直.
(1)求函数f(x) 的解析式;
(2)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长都为1),则该多面体的体积为$\frac{5}{6}$,表面积为$\frac{9+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞),(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,请将f(-2),f(1),f(3)按从小到大排序f(3)<f(-2)<f(1),.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,椭圆短轴的一个端点与两个焦点构成的三角形的面积为$\frac{5\sqrt{2}}{3}$.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点,点M(-$\frac{7}{3}$,0),求证:$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知z∈C,满足不等式$z\overline z+iz-i\overline z<0$的点Z的集合用阴影表示为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案