精英家教网 > 高中数学 > 题目详情
如图所示,在平行四边形ABCD中,AC与BD交于点O,
AE
=
1
4
AC
AB
=a,
AD
=b,则
DE
=
 
.(结果用a,b表示)
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:
DE
=
DA
+
AE
AE
=
1
4
AC
AC
=
AB
+
AD
,即可得出.
解答: 解:∵
DE
=
DA
+
AE
AE
=
1
4
AC
AC
=
AB
+
AD

DE
=-
AD
+
1
4
(
AB
+
AD
)

=-
3
4
AD
+
1
4
AB

=
1
4
a
-
3
4
b

故答案为:
1
4
a
-
3
4
b
点评:本题考查了向量的平行四边形法则、三角形法则、向量共线定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,直角梯形ABCD中,∠A=∠B=90°,AD=AB=2,BC=3,E,F分别是AD,BC上的两点,且AE=BF=1,G为AB中点,将四边形ABCD沿EF折起到(图2)所示的位置,使得EG⊥GC,连接AD、BC、AC得(图2)所示六面体.
(Ⅰ)求证:EG⊥平面CFG;
(Ⅱ)求直线CD与平面CFG所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内有点A,B,C,D,满足A,B∈l,C∉l,且|
CA
|≤|
CB
|,
CD
=sin2γ
CA
+cos2γ
CB
(γ∈R).若有等式关系:①
CD
AB
=2016
AB 
2;②
1
tan∠CDB
+
1
tan∠B
-
1
tan∠A
=2015恒成立,则:
(Ⅰ)△ABC的形状是
 

(Ⅱ)tan∠ADC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的半径为r,其内接正四面体体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程ax3-3x2+1=0正实数解有且仅有一个,则实数a的取值范围是(  )
A、{a|a≤0}
B、{a|a≤0或a=2}
C、{a|a≥0}
D、{a|a≥0或a=-2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为平面ABC内一点,O为空间任意一点,若
OP
=
1
2
OA
+
1
3
OB
OC
,则的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下4个命题:
①若p∨q为真命题,则p∧q为真命题;
②若p:?x∈R,x2-3x-2<0,则¬q:?x∈R,x2-3x-2≥0;
③设a,b∈R,则a>b是(a-1)|a|>(b-1)|b|成立的充分不必要条件;
④若关于实数x的不等式|1-2x|+|1+3x|<a|x|无解,则实数a的取值范围是(-∞,5].
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在x使2•(x-a)>1成立.则a的取值范围是(  )
A、(-∞.+∞)
B、(-2,+∞)
C、(0.+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设k∈R,若关于x方程x2-kx+1=0的二根分别在区间(0,1)和(1,2)内,则k的取值范围为(  )
A、(-∞,-2)∪(2,+∞)
B、(2,
5
2
C、(1,3)
D、(-∞,2)∪(
5
2
,+∞)

查看答案和解析>>

同步练习册答案