精英家教网 > 高中数学 > 题目详情
平面内有点A,B,C,D,满足A,B∈l,C∉l,且|
CA
|≤|
CB
|,
CD
=sin2γ
CA
+cos2γ
CB
(γ∈R).若有等式关系:①
CD
AB
=2016
AB 
2;②
1
tan∠CDB
+
1
tan∠B
-
1
tan∠A
=2015恒成立,则:
(Ⅰ)△ABC的形状是
 

(Ⅱ)tan∠ADC=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(I)由
CD
=sin2γ
CA
+cos2γ
CB
(γ∈R),sin2γ+cos2γ=1.可得A,D,B三点共线,如图所示,且点D在线段AB上.作CE⊥AB,垂足为E点.
CD
AB
=2016
AB 
2,可得-|
CD
||
AB
|cos∠CDB
=2016|
AB
|2
|
DE
|
=2016|
AB
|
,不妨取|
AB
|=1.则|
DE
|
=2016.由|
CA
|≤|
CB
|,可得点E一定在BA的延长线上.即可得出△ABC的形状.
(II)取点D与点A重合时,|
AE
|
=2016,tan∠CDB=-tan∠CAE=-
CE
EA
=-
CE
2016
=-tan∠A,tan∠B=
CE
EB
=
CE
2017
,利用
1
tan∠CDB
+
1
tan∠B
-
1
tan∠A
=2015恒成立,可得CE=
2017
2015
.即可得出tan∠ADC.
解答: 解:(I)∵
CD
=sin2γ
CA
+cos2γ
CB
(γ∈R),sin2γ+cos2γ=1.
∴A,D,B三点共线,如图所示,且点D在线段AB上.作CE⊥AB,垂足为E点.
CD
AB
=2016
AB 
2,可得-|
CD
||
AB
|cos∠CDB
=2016|
AB
|2

|
DE
|
=2016|
AB
|
,不妨取|
AB
|=1.
|
DE
|
=2016.
∵|
CA
|≤|
CB
|,
|
CA
|<|
CB
|

点E一定在BA的延长线上.
可知:△ABC是钝角三角形.
(II)取点D与点A重合时,|
AE
|
=2016,
tan∠CDB=-tan∠CAE=-
CE
EA
=-
CE
2016
=-tan∠A,tan∠B=
CE
EB
=
CE
2017

1
tan∠CDB
+
1
tan∠B
-
1
tan∠A
=2015恒成立,
∴2015=
1
tan∠B
=
2017
CE
,∴CE=
2017
2015

∴tan∠ADC=tan∠EAC=
CE
EA
=
2017
2015×2016

故答案分别为:钝角三角形;
2017
2015×2016
点评:本题考查了向量共线定理、数量积运算、直角三角形的边角关系、正切函数,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四面体OABC各棱长为1,D是棱OA的中点,则异面直线BD与AC所成角的余弦值(  )
A、
3
3
B、
1
4
C、
3
6
D、
2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是两个不共线的向量,向量
PA
=
e1
+sina
e2
(-
π
2
<a<
π
2
),
PB
=2
e1
-
e2
PC
=3
e1
-
5
2
e2
,若A,B,C三点共线,且函数f(x-a)=4cos(x-a)cos(x-2a),则f(x)在[-
π
4
π
6
]上的值域为(  )
A、[-2,
3
+2]
B、[1-
3
,2]
C、[-2
3
3
+2]
D、[
3
-1,
3
+2]

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=2,E、F分别是AB、PB的中点.
(1)求证:PA⊥CD;
(2)求三棱锥B-DEF的体积;
(3)二面角E-DF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M、N分别是正方体ABCD-A′B′C′D′的棱BB′和B′C′的中点,求:
(1)MN和CD′所成的角;
(2)MN和AD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=-1,an+1=an+
1
n(n+1)
,n∈N*,写出前5项,并写出这个数列的一个通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+ax+b,且f(4)=-3.
(1)若函数f(x)的图象关于直线x=1对称,求函数f(x)在区间[-3,3]上的值域;
(2)若函数f(x)在区间[2,+∞]上递减,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平行四边形ABCD中,AC与BD交于点O,
AE
=
1
4
AC
AB
=a,
AD
=b,则
DE
=
 
.(结果用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长均相等的四面体O-ABCD中,D为AB的中点,E为CD的中点,设
OA
=
a
OB
=
b
OC
=
c
,则向量
OE
用向量
a
b
c
表示为(  )
A、
OE
=
1
3
a
+
1
3
b
+
1
3
c
B、
OE
=
1
4
a
+
1
4
b
+
1
4
c
C、
OE
=
1
4
a
+
1
4
b
-
1
2
c
D、
OE
=
1
4
a
+
1
4
b
+
1
2
c

查看答案和解析>>

同步练习册答案