精英家教网 > 高中数学 > 题目详情

【题目】关于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,试确定k的取值范围;
(2)若k>1时,上述不等式的解集是x∈(3,+∞),求k的值.

【答案】
(1)解:由题意:x=3时,不等式 >1+ 化简为 ,即 ,可得(5﹣k)k>0,

解得:0<k<5.

∴当x=3在上述不等式的解集中,k的取值范围是(0,5)


(2)解:不等式 >1+ 化简可得 (其中k∈R,k≠0).

∵k>1,

可得: kx+2k>k2+x﹣3

不等式的解集是x∈(3,+∞),∴x=3是方程kx+2k=k2+x﹣3的解.

即3k+2k=k2

∵k≠0,

∴k=5.

故得若k>1时,不等式的解集是x∈(3,+∞)时k的值为5


【解析】(1)若x=3在上述不等式的解集中,即x=3,求解关于k的不等式 >1+ 即可.(2)根据不等式与方程的思想求解,移项通分,化简,利用x=3求解k的值.根据不等式与方程的思想求解,移项通分,化简,利用x=3求解k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求证:AB1⊥BC1
(2)求二面角B﹣AB1﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设地球半径为R,在北纬60°圈上有A、B两地,它们在纬度圈上的弧长是 ,则这两地的球面距离是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, .

(Ⅰ)证明:

(Ⅱ)平面 平面 ,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷等差数列{an}的各项均为整数,首项为a1、公差为d,Sn是其前n项和,3、21、15是其中的三项,给出下列命题:
①对任意满足条件的d,存在a1 , 使得99一定是数列{an}中的一项;
②存在满足条件的数列{an},使得对任意的n∈N* , S2n=4Sn成立;
③对任意满足条件的d,存在a1 , 使得30一定是数列{an}中的一项.
其中正确命题的序号为(
A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列的前三项和为6,且成等比数列

1)求数列的通项公式;

2)设,数列的前项和为,求使的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2sin2x的图象向左平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品生产厂家根据以往销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为g(x)(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本);销售收入R(x)(万元)满足: 假设该产品产销平衡,试根据上述资料分析:
(1)要使工厂有盈利,产量x应控制在什么范围内;
(2)工厂生产多少台产品时,可使盈利最多?
(3)当盈利最多时,求每台产品的售价.

查看答案和解析>>

同步练习册答案