精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求证:AB1⊥BC1
(2)求二面角B﹣AB1﹣C的正弦值.

【答案】
(1)证明:∵ABC﹣A1B1C1是直三棱柱,

∴CC1⊥平面ABC,则AC⊥CC1

又∵AC⊥BC,BC∩CC1=C,

∴AC⊥平面B1BCC1,则AC⊥BC1

∵BC=CC1,∴四边形B1BCC1是正方形,

∴BC1⊥B1C,

又AC∩B1C=C,∴BC1⊥平面AB1C,则AB1⊥BC1


(2)解:设BC1∩B1C=O,作OP⊥AB1于点P,连结BP.

由(1)知BO⊥AB1,而BO∩OP=O,

∴AB1⊥平面BOP,则BP⊥AB1

∴∠OPB是二面角B﹣AB1﹣C的平面角.

∵△OPB1~△ACB1,∴

∵BC=CC1=a,AC=2a,∴OP=

=

在Rt△POB中,sin∠OPB=

∴二面角B﹣AB1﹣C的正弦值为


【解析】(1)由已知可得AC⊥平面B1BCC1 , 则AC⊥BC1 , 再由BC=CC1 , 得BC1⊥B1C,由线面垂直的判定可得BC1⊥平面AB1C,从而得到AB1⊥BC1;(2)设BC1∩B1C=O,作OP⊥AB1于点P,连结BP.由(1)知BO⊥AB1 , 进一步得到AB1⊥平面BOP,说明∠OPB是二面角B﹣AB1﹣C的平面角.然后求解直角三角形得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l与抛物线y2=2px(p>0)交于A,B两点,D为坐标原点,且OA⊥OB,OD⊥AB于点D,点D的坐标为(1,2),则p=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)若存在两个极值点,且,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),满足f(1)=0,且在(0,+∞)上单调递增,则xf(x)>0的解集为(
A.{x|x<﹣1或x>1}
B.{x|0<x<1或﹣1<x<0}
C.{x|0<x<1或x<﹣1}
D.{x|﹣1<x<0或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题: ①函数y=sin( ﹣2x)是偶函数;
②方程x= 是函数y=sin(2x+ )的图象的一条对称轴方程;
③若α、β是第一象限角,且α>β,则sinα>sinβ;
④设x1、x2是关于x的方程|logax|=k(a>0,a≠1,k>0)的两根,则x1x2=1;
其中正确命题的序号是 . (填出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0且a≠1)的图象经过点(2, ).
(1)比较f(2)与f(b2+2)的大小;
(2)求函数g(x)=a (x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下几个命题中真命题的序号为
①在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相关系数r的绝对值越接近于1,两个随机变量的线性相关性越强;
③用秦九昭算法求多项式f(x)=208+9x2+6x4+x6在x=﹣4时,v2的值为22;
④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于4的直线有且只有两条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,试确定k的取值范围;
(2)若k>1时,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

同步练习册答案