【题目】已知常数,函数.
(1)讨论在区间上的单调性;
(2)若存在两个极值点,且,求a的取值范围.
【答案】(1)答案见解析;(2).
【解析】试题分析:
(1)结合函数的解析式可得,分类讨论有:
当时,在区间上单调递增;
当时,在区间上单调递减,
在区间上单调递增;
(2)首先确定,结合题意构造函数,结合函数的性质讨论计算可得a的取值范围是.
试题解析:
(1)
当时,此时,在区间上单调递增
当时,,得
当时,;时,;
故在区间上单调递减,在区间上单调递增
综上所述,当时,在区间上单调递增;当时,在区间上单调递减,在区间上单调递增
(2)由(1)知,当时,,
此时不存在极值点,因而要使得有两个极值点,必有
又的极值点只可能是,且由的定义域可知
,所以
解得,此时分别是的极小值点和极大值点,而
令由且知时,当,时,
记
当,,所以
因此,在区间上单调递减,从而故当时,
当,,所以
因此,在区间上单调递减,从而
故当时,
综上所述,满足条件的a的取值范围为
科目:高中数学 来源: 题型:
【题目】如图所示,在中,斜边,将沿直线旋转得到,设二面角的大小为.
(1)取的中点,过点的平面与分别交于点,当平面平面时,求的长(2)当时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司10位员工的月工资(单位:元)为x1 , x2 , …,x10 , 其均值和方差分别为 和s2 , 若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )
A. ,s2+1002
B. +100,s2+1002
C. ,s2
D. +100,s2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三项式(x2+x+1)n展开,当n=1,2,3,…时,得到如下所示的展开式,如图所示的广义杨辉三角形: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
观察多项式系数之间的关系,可以仿照杨辉三角形构造如图所示的广义杨辉三角形,其构造方法:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(a+x)(x2+x+1)4的展开式中,x6项的系数为46,则实数a的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求证:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com