精英家教网 > 高中数学 > 题目详情
20.某地区在六年内第x年的生产总值y(单位:亿元)与x之间的关系如图所示,则下列四个时段中,生产总值的年平均增长率最高的是(  )
A.第一年到第三年B.第二年到第四年C.第三年到第五年D.第四年到第六年

分析 由于年平均增长率为$\frac{△y}{{y}_{0}}$,其中,△y 是产值的增加值,y0表示原来的产值,结合图形,从而得出结论.

解答 解:由于年平均增长率为$\frac{△y}{{y}_{0}}$,其中,△y 是产值的增加值,y0表示“原来”的产值,
由所给的图象可得,△y最大的是第一年到第三年,第4年到第6年,
且第一年到第三年的△y 等于第4年到第6年的△y,
但第一年的产值y0 较小,生产总值的年平均增长率最高的是第一年到第三年,
故选:A.

点评 本题主要考查函数的图象特征,年平均增长率的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x2+a(x+lnx),对于任意x,f(x)>(e+1)${\;}^{\frac{a}{2}}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四边形DCBE为直角梯形,∠DCB=90°,DE∥CB,BC=2,又AC=CD=DE=1,ACB=120°,CD⊥AB.
(Ⅰ)求证:平面BCD⊥平面ABC;
(Ⅱ)若F是AB的点,求证:EF∥平面ACD;
(Ⅲ)求直线AE与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义:在数列{an}中,若满足$\frac{{a}_{n+2}}{{a}_{n+1}}$-$\frac{{a}_{n+1}}{{a}_{n}}$=d(n∈N+,d为常数),称{an}为“等差比数列”.已知在“等差比数列”{an}中,a1=a2=1,a3=3,则$\frac{{a}_{2015}}{{a}_{2013}}$(  )
A.4×20152-1B.4×20142-1C.4×20132-1D.4×20132

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平行四边形ABCD中,∠A=60°,AB=2,AD=4,点E,F分别为边AD,BC的中点,将△ABE沿BE边折起,形成四棱锥A′-BCDE.如图所示.
(1)当∠A′BC的余弦值为何值时,平面A′BE⊥平面BCDE?
(2)当G为A′D的中点时,求证:A′F∥平面EGC;
(3)在(1)的前提下,求二面角A′-DE-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在多面体ABCDE中,CD⊥平面ABC,BE∥CD,AB=2$\sqrt{5}$,AC=4,BC=2,CD=4,BE=1.
(1)求证:平面ADC⊥平面BCDE;
(2)试问在线段DE上是否存在点S,使得AS与平面ADC所成角的余弦值为$\frac{3\sqrt{5}}{7}$?若存在,确定S的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{9}$C.$\frac{1}{12}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知六棱柱ABCDEF-A1B1C1D1E1F1的侧棱垂直于底面,侧棱长与底面边长都为3,M,N分别是棱AB,AA1上的点,且AM=AN=1.
(1)证明:M,N,E1,D四点共面;
(2)求直线BC与平面MNE1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,a,b∈R,F1,F2分别为双曲线的左右焦点,O为坐标原点,点P为双曲线上一点满足|OP|=3a,且|PF1|,|F1F2|,|PF2|成等比数列,则此双曲线的离心率为(  )
A.$\frac{\sqrt{21}}{3}$B.$\frac{7}{3}$C.$\frac{2\sqrt{7}}{3}$D.$\frac{7\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案