精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列和等比数列,其中的公差不为0.是数列的前项和.是数列的前3项,且.

1)求数列的通项公式;

2)是否存在常数,使得为等差数列?并说明理由.

【答案】(1); ; (2)

【解析】

1)由是等比数列的前3项利用等差中项的性质列出d的关系式,代入即可求出d,从而求得数列的通项公式;(2)令先求出的表达式,若数列为等差数列推出为常数,则,列出方程求t,代入原式验证即可.

1)设数列的公差为d,通项公式为

因为是等比数列的前3项,所以

,整理得

,所以

所以

因为,所以.

2)数列的前n项和

,令

若数列为等差数列,则为常数,

时,

整理得,解得(舍去)

经验证当均为常数,

综上所述,为等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象中两相邻的最高点和最低点分别为,则函数的单调递增区间为________ ,将函数的图象至少平移 ______个单位长度后关于直线对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某种产品市场产销量情况如图所示,其中:表示产品各年年产量的变化规律;表示产品各年的销售情况.下列叙述:(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( )

A.1),(2),(3B.1),(3),(4

C.2),(4D.2),(3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高考数学考试中有12道选择题,每道选择题有4个选项,其中有且仅有一个是正确的.评分标准规定:在每小题给出的四个选项中,只有一项是符合题目要求的,答对得5分,不答或答错得0分.某考生每道选择题都选出一个答案,能确定其中有8道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题能判断出一个选项是错误的,还有一道题因不理解题意只能乱猜.试求该考生的选择题:

1)得60分的概率;

2)得多少分的概率最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.

(Ⅰ)应从老、中、青员工中分别抽取多少人?

(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.

员工

项目

A

B

C

D

E

F

子女教育

×

×

继续教育

×

×

×

大病医疗

×

×

×

×

×

住房贷款利息

×

×

住房租金

×

×

×

×

×

赡养老人

×

×

×

(i)试用所给字母列举出所有可能的抽取结果;

(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.

查看答案和解析>>

同步练习册答案