精英家教网 > 高中数学 > 题目详情

【题目】已知函数图象中两相邻的最高点和最低点分别为,则函数的单调递增区间为________ ,将函数的图象至少平移 ______个单位长度后关于直线对称.

【答案】

【解析】

由函数图象中两相邻的最高点和最低点分别为,可以得到下列等式: 为函数的周期),,再结合,求出,然后利用余弦函数的单调性求出函数的单调递增区间,平行后图象关于直线对称,说明平移后的图象在处达到最值,求出平移的单位长度.

因为函数图象中两相邻的最高点和最低点分别为,所有有 为函数的周期),所以,而,而,所以,又函数最高点为所以有,而,所以,因此函数解析式为,当时,函数单调递增,即,函数单调递增,因此函数的单调递增区间为.

函数平移个单位,得到,此时图象关于对称,因此 ,当时,,所以函数的图象至少平移个单位长度后关于直线对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若,方程有两个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.

(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;

(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是( )

A.”是“”的充分不必要条件

B.函数的最小值为2

C.时,命题“若,则”为真命题

D.命题“”的否定是“

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线的准线与椭圆交于两点,过线段上的动点作斜率为正的直线与抛物线相切,且交椭圆于两点.

(Ⅰ)求线段的长及直线斜率的取值范围;

(Ⅱ)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列,其中的公差不为0.是数列的前项和.是数列的前3项,且.

1)求数列的通项公式;

2)是否存在常数,使得为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下述结论中错误的是(

A.有且仅有个零点,则有且仅有个极小值点

B.有且仅有个零点,则上单调递增

C.有且仅有个零点,则的范围是

D.图像关于对称,且在单调,则的最大值为

查看答案和解析>>

同步练习册答案