精英家教网 > 高中数学 > 题目详情
12.在△ABC中,内角A=$\frac{π}{3}$,P为△ABC的外心,若$\overrightarrow{AP}$=λ1$\overrightarrow{AB}$+2λ2$\overrightarrow{AC}$,其中λ1与λ2为实数,则λ12的最大值为(  )
A.$\frac{1}{2}$B.1-$\frac{\sqrt{2}}{3}$C.$\frac{3}{4}$D.1+$\frac{\sqrt{3}}{2}$

分析 设|AB|=c,|AC|=b,进行数量积运算便可得到 $\overrightarrow{AP}$•$\overrightarrow{AB}$=$\frac{1}{2}$c2,$\overrightarrow{AP}$•$\overrightarrow{AC}$=$\frac{1}{2}$b2;根据条件在$\overrightarrow{AP}$=λ1$\overrightarrow{AB}$+2λ2$\overrightarrow{AC}$两边分别乘以$\overrightarrow{AB}$,$\overrightarrow{AC}$,进行数量积运算,并整理可得到$\left\{\begin{array}{l}\frac{1}{2}{c}^{\;}={λ}_{1}{c}^{\;}+{λ}_{2}b\\ \frac{1}{2}{b}^{\;}=\frac{1}{2}{λ}_{1}{c}^{\;}+2{λ}_{2}{b}^{\;}\end{array}\right.$,
消元即可得出$\left\{\begin{array}{l}{λ}_{1}{=\frac{2}{3}}^{\;}-\frac{1}{3}•\frac{b}{c}\\{λ}_{2}{{=\frac{1}{3}}^{\;}-\frac{1}{6}•\frac{c}{b}}^{\;}\end{array}\right.$,从而表示出λ12,根据基本不等式即可求出λ12的最大值.,从而表示出x+y,根据基本不等式即可求出x+y的最大值

解答 解:设|AB|=c,|AC|=b,
则:$\overrightarrow{AP}$•$\overrightarrow{AB}$=$\frac{1}{2}$c2,$\overrightarrow{AP}$•$\overrightarrow{AC}$=$\frac{1}{2}$b2
又cosA=$\frac{1}{2}$,在$\overrightarrow{AP}$=λ1$\overrightarrow{AB}$+2λ2$\overrightarrow{AC}$的两边分别乘以$\overrightarrow{AB}$,$\overrightarrow{AC}$得:$\left\{\begin{array}{l}\frac{1}{2}{c}^{2}={λ}_{1}{c}^{2}+{λ}_{2}bc\\ \frac{1}{2}{b}^{2}=\frac{1}{2}{λ}_{1}{bc}^{\;}+2{λ}_{2}{b}^{2}\end{array}\right.$;
整理得,$\left\{\begin{array}{l}\frac{1}{2}{c}^{\;}={λ}_{1}{c}^{\;}+{λ}_{2}b\\ \frac{1}{2}{b}^{\;}=\frac{1}{2}{λ}_{1}{c}^{\;}+2{λ}_{2}{b}^{\;}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{λ}_{1}{=\frac{2}{3}}^{\;}-\frac{1}{3}•\frac{b}{c}\\{λ}_{2}{{=\frac{1}{3}}^{\;}-\frac{1}{6}•\frac{c}{b}}^{\;}\end{array}\right.$;
∴λ12=1-($\frac{b}{3c}$+$\frac{c}{6b}$)≤1-2$\sqrt{\frac{1}{18}}$=1-$\frac{\sqrt{2}}{3}$;
∴λ12的最大值为  1-$\frac{\sqrt{2}}{3}$.
故选:B

点评 考查向量数量积的运算及计算公式,三角形的外心的概念,消元法解二元一次方程组,以及基本不等式求最值,不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}的前n项的为Sn,若Sn=2,S3n=12,则S4n=(  )
A.16B.18C.20D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an},{bn}的前n项和分别为Sn,Tn,若对于任意的自然数n,都有$\frac{S_n}{T_n}$=$\frac{2n-3}{4n-3}$,则$\frac{{{a_3}+{a_{15}}}}{{2({{b_3}+{b_9}})}}$+$\frac{a_3}{{{b_2}+{b_{10}}}}$=(  )
A.$\frac{19}{41}$B.$\frac{17}{37}$C.$\frac{7}{15}$D.$\frac{20}{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x1满足3x+3x-1=7,x2满足3x+3log3(x-2)=7,则x1+x2=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆M:x2+y2-2x+a=0.
(1)若a=-8,过点P(4,5)作圆M的切线,求该切线方程;
(2)若AB为圆M的任意一条直径,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-6(其中O为坐标原点),求圆M的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}是递增的等比数列,前n项和为Sn,已知a3=8,S3=14.
(Ⅰ)求数列{an}的通项公式;
(II)若数列{bn},满足anbn=log2an,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C的方程(x-1)2+y2=1,P是椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1上一点,过P作圆的两条切线,切点为A、B,则$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围为(  )
A.$[2\sqrt{2}-3,\frac{56}{9}]$B.$[\frac{56}{9},+∞)$C.$(-∞,2\sqrt{2}-3]$D.$(-∞,2\sqrt{2}-3]∪[\frac{56}{9},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A,B,C的对边分别为a,b,c,满足下列条件的有两个的是(  )
A.$a=1,b=\sqrt{2},A={30°}$B.$b=\sqrt{2},c=2,B={45°}$C.a=1,b=2,c=3D.a=3,b=2,A=60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.拟用长度为l的钢筋焊接一个如图所示的矩形框架结构(钢筋体积、焊接点均忽略不计),其中G、H分别为框架梁MN、CD的中点,MN∥CD,设框架总面积为S平方米,BN=2CN=2x米.
(1)若S=18平方米,且l不大于27米,试求CN长度的取值范围;
(2)若l=21米,求当CN为多少米时,才能使总面积S最大,并求最大值.

查看答案和解析>>

同步练习册答案