| A. | $a=1,b=\sqrt{2},A={30°}$ | B. | $b=\sqrt{2},c=2,B={45°}$ | C. | a=1,b=2,c=3 | D. | a=3,b=2,A=60° |
分析 根据正弦定理和边角关系判断A、B、D,根据三边关系判断出.
解答 解:A、由$\frac{a}{sinA}=\frac{b}{sinB}$得,$sinB=\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{1}{2}}{1}$=$\frac{\sqrt{2}}{2}$,
∵0°<B<180°,且b>a,∴B=45°或135°,则A符合题意;
B、由$\frac{c}{sinC}=\frac{b}{sinB}$得,$sinC=\frac{csinB}{b}$=$\frac{2×\frac{\sqrt{2}}{2}}{\sqrt{2}}$=1,
∵0°<C<180°,∴C=90°,则B不符合题意;
C、由a=1,b=2,c=3得,a+b=c,则不能构成三角形,则C不符合题意;
D、由$\frac{a}{sinA}=\frac{b}{sinB}$得,$sinB=\frac{bsinA}{a}$=$\frac{2×\frac{\sqrt{3}}{2}}{3}$=$\frac{\sqrt{3}}{3}$<$\frac{\sqrt{3}}{2}$,
∵0°<B<180°,且b<a,∴B<A=60°,即只有一解,则D不符合题意;
故选A.
点评 本题考查了正弦定理,以及边角关系在解三角形中的应用,注意内角的范围,考查化简、变形能力.
科目:高中数学 来源: 题型:选择题
| A. | $[-1,\frac{1}{3})$ | B. | $[0,\frac{1}{3}]$ | C. | [3,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1-$\frac{\sqrt{2}}{3}$ | C. | $\frac{3}{4}$ | D. | 1+$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+2y-3=0 | B. | 2x-y-3=0 | C. | 2x+y-3=0 | D. | x+2y+3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}={({-1})^{n+1}}({2n+1})$ | B. | ${a_n}={({-1})^{n+1}}({2n-1})$ | C. | ${a_n}={({-1})^n}({2n+1})$ | D. | ${a_n}={({-1})^n}({2n-1})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com