精英家教网 > 高中数学 > 题目详情
13.已知等比数列{an}的公比q>1,a1=1,且a1,a3,a2+14成等差数列,数列{bn}满足a1b1+a2b2+…+anbn=(n-1)•3n+1(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)令cn=(-1)n$\frac{4n}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn

分析 (1)利用等差数列与等比数列的通项公式、递推关系即可得出.
(2)cn=(-1)n•$\frac{4n}{(2n-1)(2n+1)}$=(-1)n$(\frac{1}{2n-1}+\frac{1}{2n+1})$,对n分类讨论即可得出.

解答 解:(1)等比数列{an}的公比q>1,a1=1,且a1,a3,a2+14成等差数列,
∴2q2=1+q+14,解得q=3,
∴an=3n-1
∵数列{bn}满足a1b1+a2b2+…+anbn=(n-1)•3n+1(n∈N*).
∴n=1时,a1b1=1,解得b1=1.
n≥2时,a1b1+a2b2+…+an-1bn-1=(n-2)•3n-1+1,
可得:anbn=(2n-1)•3n-1,∴bn=2n-1.(n=1时也成立).
∴bn=2n-1.
(2)cn=(-1)n$\frac{4n}{{{b_n}{b_{n+1}}}}$=(-1)n•$\frac{4n}{(2n-1)(2n+1)}$=(-1)n$(\frac{1}{2n-1}+\frac{1}{2n+1})$,
∴n=2k(k∈N*)时,数列{cn}的前n项和Tn=-$(1+\frac{1}{3})$+$(\frac{1}{3}+\frac{1}{5})$+…-$(\frac{1}{2n-3}+\frac{1}{2n+1})$+$(\frac{1}{2n-1}+\frac{1}{2n+1})$=$\frac{1}{2n+1}-1$=$\frac{-2n}{2n+1}$.
n=2k-1(k∈N*)时,数列{cn}的前n项和Tn=Tn+1-cn+1=$\frac{-2(n+1)}{2n+3}$-$(\frac{1}{2n+1}+\frac{1}{2n+3})$=-$\frac{2n+2}{2n+1}$.
∴Tn=$\left\{\begin{array}{l}{-\frac{2n}{2n+1},n为偶数}\\{-\frac{2n+2}{2n+1},n为奇数}\end{array}\right.$.

点评 本题考查了“裂项求和”方法、等差数列与等比数列的通项公式、递推关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an},{bn}的前n项和分别为Sn,Tn,若对于任意的自然数n,都有$\frac{S_n}{T_n}$=$\frac{2n-3}{4n-3}$,则$\frac{{{a_3}+{a_{15}}}}{{2({{b_3}+{b_9}})}}$+$\frac{a_3}{{{b_2}+{b_{10}}}}$=(  )
A.$\frac{19}{41}$B.$\frac{17}{37}$C.$\frac{7}{15}$D.$\frac{20}{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C的方程(x-1)2+y2=1,P是椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1上一点,过P作圆的两条切线,切点为A、B,则$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围为(  )
A.$[2\sqrt{2}-3,\frac{56}{9}]$B.$[\frac{56}{9},+∞)$C.$(-∞,2\sqrt{2}-3]$D.$(-∞,2\sqrt{2}-3]∪[\frac{56}{9},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A,B,C的对边分别为a,b,c,满足下列条件的有两个的是(  )
A.$a=1,b=\sqrt{2},A={30°}$B.$b=\sqrt{2},c=2,B={45°}$C.a=1,b=2,c=3D.a=3,b=2,A=60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且a,b,c成等差数列,有下列四个结论:①b2≥ac;②$\frac{1}{a}+\frac{1}{c}≥\frac{2}{b}$;③${b^2}≤\frac{{{a^2}+{c^2}}}{2}$;④$B∈({0,\frac{π}{3}}]$.其中正确的结论序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数[x-1+(y+1)i](2+i)=0,(x,y∈R),则x+y=0 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三点A(1,-1),B(3,0),C(2,1),P为平面ABC上的一点,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$•$\overrightarrow{AB}$=0,$\overrightarrow{AP}$•$\overrightarrow{AC}$=3.
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$;
(2)求λ+μ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.拟用长度为l的钢筋焊接一个如图所示的矩形框架结构(钢筋体积、焊接点均忽略不计),其中G、H分别为框架梁MN、CD的中点,MN∥CD,设框架总面积为S平方米,BN=2CN=2x米.
(1)若S=18平方米,且l不大于27米,试求CN长度的取值范围;
(2)若l=21米,求当CN为多少米时,才能使总面积S最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若f(lgx)=x,则f(3)=(  )
A.103B.3C.310D.lg3

查看答案和解析>>

同步练习册答案