精英家教网 > 高中数学 > 题目详情
(2013•临沂一模)已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={(x,y)|y=
1
x
};
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex-2}.
其中是“垂直对点集”的序号是(  )
分析:对于①利用渐近线互相垂直,判断其正误即可.对于②、③、④通过函数的定义域与函数的值域的范围,画出函数的图象,利用“垂直对点集”的定义,即可判断正误;
解答:解:对于①y=
1
x
是以x,y轴为渐近线的双曲线,渐近线的夹角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,满足好集合的定义;在另一支上对任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立,所以不满足“垂直对点集”的定义,不是“垂直对点集”.
对于②M={(x,y)|y=sinx+1},对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),满足“垂直对点集”的定义,所以M是“垂直对点集”;正确.
对于③M={(x,y)|y=log2x},取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直对点集”.
对于④M={(x,y)|y=ex-2},如下图红线的直角始终存在,对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,-1),则N(ln2,0),满足“垂直对点集”的定义,所以是“垂直对点集”;正确.

所以②④正确.
故选D.
点评:本题考查“垂直对点集”的定义,利用对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,是本题解答的关键,函数的基本性质的考查,注意存在与任意的区别.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂一模)函数f(x)=ln
x
x-1
+x
1
2
的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂一模)定义在R上的偶函数f(x)对任意的x∈R有f(1+x)=f(1-x),且当x∈[2,3]时,f(x)=-x2+6x-9.若函数y=f(x)-logax在(0,+∞)上有四个零点,则a的值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂一模)如图所示,在边长为l的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂一模)已知实数x,y满足不等式组
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目标函数z=y-ax取得最大值时的唯一最优解是(1,3),则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂一模)如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点为A、B,离心率为
3
2
,直线x-y+l=0经过椭圆C的上顶点,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x=-
10
3
分别交于M,N两点.
(I)求椭圆C的方程;
(Ⅱ)求线段MN长度的最小值;
(Ⅲ)当线段MN长度最小时,在椭圆C上是否存在这样的点P,使得△PAS的面积为l?若存在,确定点P的个数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案