精英家教网 > 高中数学 > 题目详情
设函数f(x)=|x-m|-mx,其中m为常数且m<0.
(1)解关于x的不等式f(x)<0;
(2)试探求f(x)存在最小值的充要条件,并求出相应的最小值.
分析:(1)将f(x)<0转化为|x-m|<mx,得-mx<x-m<mx,再对参数m分类讨论解不等式.
(2)函数可变为f(x)=
(1-m)x-m,x≥m
-(1+m)x+m,x<m
,运用单调性据函数的形式判断出-(1-m)≤0,结合m<0得出答案.
解答:解:(1)由f(x)<0得,|x-m|<mx,得-mx<x-m<mx,
(1-m)x<m
(1+m)x>m

①当m=-1时,
2x<-1
0>-1
?
x<-
1
2

②当-1<m<0时,
x<
m
1-m
x>
m
1+m
?
m
1+m
<x<
m
1-m

③当m<-1时,
x<
m
1-m
x<
m
1+m
?
x<
m
1-m

综上所述,当m<-1时,不等式解集为{x|x<
m
1-m
};
当m=-1时,不等式解集为{x|x<-
1
2
};
当-1<m<0时,不等式解集为{x|
m
1+m
<x<
m
1-m
}.
(2)f(x)=
(1-m)x-m,x≥m
-(1+m)x+m,x<m

∵m<0,∴1-m>0,f(x)在[m,+∞)上单调递增,要使函数f(x)存在最小值,
则f(x)在(-∞,m)上是减函数或常数,
∴-(1+m)≤0即m≥-1,又m<0,
∴-1≤m<0.
故f(x)存在最小值的充要条件是-1≤m<0,且f(x)min=f(m)=-m2
点评:本题考查解不等式,分类讨论的思想,在(2)中要根据函数的形式判断出函数中参数的取值范围.难度较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案