【题目】在极坐标系中,曲线的极坐标方程是,点是曲线上的动点.点满足 (为极点).设点的轨迹为曲线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,已知直线的参数方程是,(为参数).
(1)求曲线的直角坐标方程与直线的普通方程;
(2)设直线交两坐标轴于,两点,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)当,时,求函数在上的最小值;
(2)若函数在与处的切线互相垂直,求的取值范围;
(3)设,若函数有两个极值点,,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产A、B两种产品,根据市场调查,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的平方根成正比,其关系如图2(注:单位是万元).
图1 图2
(1)若A、B两种产品的利润表示为投资的函数分别为、,求出它们的表达式并注明定义域;
(2)现企业有20万元资金全部投入A、B两种产品的生产,问:怎样分配这20万元资金,能使获得的利润最大,其最大利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为(为参数),以为极点,轴非负半轴为极轴建立极坐标系. 直线的极坐标方程是.
(Ⅰ)求圆的极坐标方程和直线的直角坐标方程;
(Ⅱ)射线与圆的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的是函数(,)在区间上的图象,将该函数图象各点的横坐标缩小到原来的一半(纵坐标不变),再向右平移()个单位长度后,所得到的图象关于直线对称,则的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为的菱形,,,为的中点,为的中点,点在线段上,且.
(1)求证:平面;
(2)若平面底面ABCD,且,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左右顶点分别为,,点在椭圆上,且的面积为.
(1)求椭圆的方程;
(2)设直线不经过点且与椭圆交于,两点,若直线与直线的斜率之积为,证明:直线过顶点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com