16£®ÉèÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãA£¨{2£¬$\sqrt{2}}$£©ÔÚÍÖÔ²ÉÏ£¬ÇÒÂú×ã$\overrightarrow{A{F_2}}$•$\overrightarrow{{F_1}{F_2}}$=0£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©¶¯Ö±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¬ÇÒOP¡ÍOQ£¬ÊÇ·ñ´æÔÚÔ²x2+y2=r2ʹµÃlÇ¡ºÃÊǸÃÔ²µÄÇÐÏߣ¬Èô´æÔÚ£¬Çó³ör£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖªc=2£¬½«A´úÈëÍÖÔ²£¬Áз½³Ì×飬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëÍÖÔ²·½³Ì£¬¡÷£¾0£¬¸ù¾ÝΤ´ï¶¨Àí¶¨ÀíÇóµÃx1+x2¼°x1•x2£¬´úÈëÖ±Ïßl·½³ÌÇóµÃy1•y2£¬ÓÉOP¡ÍOQ£¬¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾÇóµÃx1x2+y1y2=0£¬ÇóµÃmµÄȡֵ·¶Î§£¬lÓëÔ²x2+y2=r2ÏàÇУ¬´úÈë¼´¿ÉÇóµÃrµÄÖµ£®

½â´ð ½â£º£¨1£©¡ß$\overrightarrow{A{F_2}}•\overrightarrow{{F_1}{F_2}}=0$£¬
¡àAF2¡ÍF1F2£¬
¡ßAÔÚÍÖÔ²ÉÏ£¬
¡à$\frac{c^2}{a^2}+\frac{y_0^2}{b^2}=1$£¬½âµÃ${y_0}=\frac{b^2}{a}$£®¡­£¨1·Ö£©
¡à$\left\{{\begin{array}{l}{c=2}\\{\frac{b^2}{a}=\sqrt{2}}\\{{a^2}={b^2}+{c^2}}\end{array}}\right.$£¬½âµÃa2=8£¬b2=4£¬£®¡­£¨3·Ö£©
¡àÍÖÔ²$C£º\frac{x^2}{8}+\frac{y^2}{4}=1$£®¡­£¨4·Ö£©
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
½«l£ºy=kx+m´úÈë$C£º\frac{x^2}{8}+\frac{y^2}{4}=1$£¬ÕûÀíµÃ£º£¨1+2k2£©x2+4kmx+2m2-8=0£¬¡­£¨5·Ö£©
¡ß¡÷£¾0£¬
¡à8k2-m2+4£¾0£¬¡­£¨6·Ö£©
ÇÒ${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}$£¬${x_1}{x_2}=-\frac{{2{m^2}-8}}{{1+2{k^2}}}$£¬
¡à${y_1}{y_2}=£¨k{x_1}+m£©£¨k{x_2}+m£©={k^2}{x_1}{x_2}+km£¨{x_1}+{x_2}£©+{m^2}=\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}$£¬¡­£¨7·Ö£©
¡ßOP¡ÍOQ£¬
¡àx1x2+y1y2=0£¬¼´$\frac{{2{m^2}-8}}{{1+2{k^2}}}+\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}=0$£¬
¡à${k^2}=\frac{{3{m^2}-8}}{8}$£¬¡­£¨8·Ö£©
ÓÉ$\frac{{3{m^2}-8}}{8}¡Ý0$ºÍ8k2-m+4£¾0£¬µÃ${m^2}¡Ý\frac{8}{3}$¼´¿É£®¡­£¨9·Ö£©
¡ßlÓëÔ²x2+y2=r2ÏàÇУ¬
¡à${r^2}=\frac{{|m{|^2}}}{{1+{k^2}}}=\frac{8}{3}$£¬¡­£¨11·Ö£©
´æÔÚÔ²${x^2}+{y^2}=\frac{8}{3}$·ûºÏÌâÒ⣮¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Î¤´ï¶¨Àí£¬ÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²é·ÖÎöÎÊÌâ¼°½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-ax+£¨a-1£©lnx£¬a£¾1£®
£¨1£©Èôa=3£¬Çóf£¨x£©µÄ¼«Öµ£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[1£¬2]ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÈôËæ»ú±äÁ¿¦ÇµÄ·Ö²¼ÁÐÈç±í£º
¦Ç012345
P0.10.20.20.30.10.1
Ôòµ±P£¨¦Ç£¼x£©=0.8ʱ£¬ÊµÊýxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x¡Ü4B£®3£¼x£¼4C£®3¡Üx¡Ü4D£®3£¼x¡Ü4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ä³ÊÐÒ»¸öÇøµÄ½ÖµÀÊÇ11¡Á11µÄ·½¸ñÏߣ¬È÷Ë®³µÃ¿Ìì´Ó×óϽÇA£¨0£¬0£©´¦³ö·¢£¬ÑؽֵÀ¿ªµ½ÓÒÉϽǵÄB£¨10£¬10£©´¦£®ÔÚÿ¸ö·¿Ú˾»úËæ»úµÄÑ¡ÔñÐнø·½Ïò£¬Ö»Òª±£Ö¤²»ÈÆÔ¶¾ÍÐУ®Ä³Ìì´Ó£¨9£¬9£©µ½£¨10£¬9£©µÄ½ÖµÀ·¢ÉúʹÊÎÞ·¨Í¨ÐУ®µ«Ë¾»ú³ö·¢Ê±²¢²»ÖªµÀ£¬ÔòÈ÷Ë®³µÄÜÕÕ³£Ë³Àûµ½´ïBµÄ¸ÅÂÊÊÇ$\frac{{C}_{18}^{9}}{{C}_{20}^{10}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª£¨x+$\frac{1}{\root{3}{x}}$£©nµÄÕ¹¿ªÊ½ÖÐûÓг£ÊýÏÔòn²»ÄÜÊÇ£¨¡¡¡¡£©
A£®5B£®6C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Éèa£¬b£¬c¡ÊRÇÒa£¾b£¬ÔòÏÂÁв»µÈʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®c-a£¼c-bB£®ac2£¾bc2C£®$\frac{1}{a}$£¼$\frac{1}{b}$D£®$\frac{b}{a}$£¼1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®SnΪÊýÁÐ{an}µÄǰnÏîºÍ£®ÒÑÖªan£¾0£¬an2+an=2Sn+2£®
£¨I£©Çó{an}µÄͨÏʽ£»
£¨II£©Éèbn=$\frac{2}{{a}_{n}{a}_{n+1}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Çóº¯Êýf£¨x£©=2x2-6x ÔÚÇø¼ä[-1£¬0]ÉϵÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ºÖªÔÚÇø¼ä£¨400£¬800]ÉÏ£¬ÎÊ£º
£¨1£©ÓжàÉÙ¸öÄܱ»5Õû³ýÇÒÊý×ÖÔÊÐíÖØ¸´µÄÕûÊý£¿
£¨2£©ÓжàÉÙ¸öÄܱ»5Õû³ýÇÒÊý×Ö²»Öظ´µÄÕûÊý£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸