ÏÂÁÐËÄÖÖ˵·¨£º
£¨1£©ÃüÌ⣺¡°´æÔÚx¡ÊR£¬Ê¹µÃx2+1£¾3x¡±µÄ·ñ¶¨ÊÇ¡°¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐx2+1¡Ü3x¡±£®
£¨2£©ÈôÖ±Ïßa¡¢bÔÚƽÃæ¦ÁÄÚµÄÉäÓ°»¥Ïà´¹Ö±£¬Ôòa¡Íb£®
£¨3£©ÒÑÖªÒ»×éÊý¾ÝΪ20¡¢30¡¢40¡¢50¡¢60¡¢70£¬ÔòÕâ×éÊý¾ÝµÄÖÚÊý¡¢ÖÐλÊý¡¢Æ½¾ùÊýµÄ´óС¹ØϵÊÇ£ºÖÚÊý£¾ÖÐλÊý£¾Æ½¾ùÊý£®
£¨4£©ÒÑÖª»Ø¹é·½³Ì
?
y
=4.4x+838.19
£¬Ôò¿É¹À¼ÆxÓëyµÄÔö³¤ËÙ¶ÈÖ®±ÈԼΪ
5
22
£®
£¨5£©ÈôA£¨-2£¬3£©£¬B£¨3£¬-2£©£¬C£¨
1
2
£¬m£©Èýµã¹²Ïߣ¬ÔòmµÄֵΪ2£®
ÆäÖÐËùÓÐÕýȷ˵·¨µÄÐòºÅÊÇ
 
£®
·ÖÎö£ºÀûÓú¬Á¿´ÊµÄÃüÌâµÄ·ñ¶¨ÐÎʽÅжϳö£¨1£©¶Ô£»¾Ý»­³öÖ±ÏßµÄλÖùØϵÅжϳö£¨2£©´í£»¾ÝÊý¾ÝÌØÕ÷ÊýµÄÇó·¨Åжϳö£¨3£©´í£»¸øxÔö¼ÓÒ»¸öµ¥Î»¾Ý»Ø¹éÖ±Ïß·½³ÌÇó³öyµÄ±ä»¯Á¿£¬Çó³öxÓëyµÄÔö³¤ËÙ¶ÈÖ®±È£¬Åжϳö£¨4£©´í£»¾ÝÈýµã¹²Ïßת»¯ÎªÁ½ÏòÁ¿¹²Ïߣ¬ÀûÓÃÏòÁ¿¹²ÏߵijäÒªÌõ¼þÇó³ömµÄ·¶Î§£¬Åжϳö£¨5£©´í£®
½â´ð£º½â£º¶ÔÓÚ£¨1£©¸ù¾Ýº¬Á¿´ÊµÄÃüÌâµÄ·ñ¶¨£¬½«Á¿´Ê½»»»Í¬Ê±½«½áÂÛ·ñ¶¨£¬µÃµ½£¨1£©¶Ô
¶ÔÓÚ£¨2£©µ±Á½ÌõÖ±Ïßб½»Ê±£¬Á½Ö±ÏßÔÚͬһ¸öƽÃæµÄÉäÓ°Ò²ÓпÉÄÜ´¹Ö±£¬¹Ê£¨2£©´í
¶ÔÓÚ£¨3£©Õâ×éÊý¾ÝµÄÖÚÊýΪ20£¬30£¬40£¬50£¬60£¬70¹²6¸öÖµ£¬ÖÐλÊýΪ
50+60
2
=55
£¬
ƽ¾ùÊýΪ
20+30+40+50+60+70
6
=45
¹Ê£¨3£©´í
¶ÔÓÚ£¨4£©xÿÔö¼ÓÒ»¸öµ¥Î»£¬yƽ¾ùÔö¼Ó4£¬.4£¬ËùÒÔxÓëyµÄÔö³¤ËÙ¶ÈÖ®±ÈԼΪ
1
4.4
=
5
22
£¬¹Ê£¨4£©¶Ô
¶ÔÓÚ£¨5£©A¡¢B¡¢CÈýµã¹²Ïߣ¬Ôò
AB
¡Î
AC

AB
=(5£¬-5)  £¬
AC
=(
5
2
£¬m-3)
£¬¡à5(m-3)=-5¡Á
5
2
£¬¡àm=
1
2
¹Ê£¨5£©´í
¹Ê´ð°¸Îª£¨1£©£¨4£©
µãÆÀ£º½â¾öº¬Á¿´ÊµÄÃüÌâµÄ·ñ¶¨£¬Ö»Ð轫Á¿´Ê»¥»»£¬½áÂÛ·ñ¶¨¼´¿É£»½â¾öÈýµã¹²ÏßÎÊÌⳣת»¯ÎªÁ½¸öÏòÁ¿¹²ÏßÎÊÌ⣬ÀûÓÃÏòÁ¿¹ØϵµÄ³äÒªÌõ¼þÀ´½â¾ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐËÄÖÖ˵·¨£º
£¨1£©²»µÈʽ£¨x-1£©
x2-x-2
¡Ý
0µÄ½â¼¯Îª[2£¬+¡Þ£©£»
£¨2£©Èôa£¬b¡ÊR£¬Ôò¡°log3a£¾log3b¡±ÊÇ¡°(
1
3
)a£¼(
1
3
)b
¡±³ÉÁ¢µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨3£©°Ñº¯Êýy=sin£¨-2x£©£¨x¡ÊR£©µÄͼÏóÉÏËùÓеĵãÏòÓÒƽÒÆ
¦Ð
8
¸öµ¥Î»¼´¿ÉµÃµ½º¯Êý
y=sin(-2x+
¦Ð
4
)(x¡ÊR)
µÄͼÏó£»
£¨4£©º¯Êýf(x)=log
1
2
(x2+ax+2)
µÄÖµÓòΪR£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-2
2
£¬2
2
£©£®
ÆäÖÐÕýÈ·µÄ˵·¨ÓУ¨¡¡¡¡£©
A¡¢.1¸öB¡¢2¸ö
C¡¢3¸öD¡¢.4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐËÄÖÖ˵·¨£º
£¨1£©ÃüÌâ¡°?x¡ÊR£¬Ê¹µÃx2+1£¾3x¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬¶¼ÓÐx2+1¡Ü3x¡±£®
£¨2£©Èôa£¬b¡ÊR£¬Ôò¡°log3a£¾log3b¡±ÊÇ¡°(
1
3
)a£¼(
1
3
)b
¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ
£¨3£©°Ñº¯Êýy=sin£¨-2x£©£¨x¡ÊR£©µÄͼÏóÉÏËùÓеĵãÏòÓÒƽÒÆ
¦Ð
8
¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=sin(-2x+
¦Ð
4
)(x¡ÊR)
µÄͼÏó£®
£¨4£©ÈôËıßÐÎABCDÊÇƽÐÐËıßÐΣ¬Ôò
AB
=
DC
£¬
BC
=
DA
£®
£¨5£©Á½¸ö·ÇÁãÏòÁ¿
a
£¬
b
»¥Ïà´¹Ö±£¬Ôò|
a
| 2+|
b
|2=(
a
+
b
)2

ÆäÖÐÕýȷ˵·¨¸öÊýÊÇ£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËÄÖÖ˵·¨£º
£¨1£©·½³Ìy2-x2=0±íʾÁ½ÌõÖ±Ïߣºy+x=0£¬y-x=0£»
£¨2£©Æ½ÃæÖ±½Ç×ø±êϵÖÐÅ×ÎïÏßy2=-xµÄ¿ª¿ÚÏò×óÇÒ×¼Ïß·½³ÌΪx=-
1
2
£»
£¨3£©Æ½ÃæÖ±½Ç×ø±êϵÖÐÇãб½ÇΪ0¡ãµÄÖ±ÏßÖ»ÓÐÒ»Ìõ¼´xÖ᣻
£¨4£©Ë«ÇúÏßx2-y2=1Óëy2-x2=4ÓÐÏàͬµÄ½¥½üÏߣ®
ÆäÖÐÕýȷ˵·¨µÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij¹¤³§12ÄêÀ´Ä³²úÆ·×ܲúÁ¿SÓëʱ¼ät£¨Ä꣩µÄº¯Êý¹ØϵÈçͼËùʾ£¬ÏÂÁÐËÄÖÖ˵·¨£º
£¨1£©Ç°ÈýÄê×ܲúÁ¿Ôö³¤µÄËÙ¶ÈÔ½À´Ô½¿ì£»
£¨2£©Ç°ÈýÄê×ܲúÁ¿Ôö³¤µÄËÙ¶ÈÔ½À´Ô½Âý£»
£¨3£©µÚ3ÄêºóÖÁµÚ8ÄêÕâÖÖ²úÆ·Í£Ö¹Éú²úÁË£»
£¨4£©µÚ8ÄêºóÖÁµÚ12Äê¼ä×ܲúÁ¿ÔÈËÙÔö¼Ó£®ÆäÖÐÕýÈ·µÄ˵·¨ÊÇ
£¨2£©£¨3£©£¨4£©
£¨2£©£¨3£©£¨4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸