精英家教网 > 高中数学 > 题目详情
下列选项中,可作为函数y=f(x)的图象的是(  )
A、
B、
C、
D、
考点:函数的概念及其构成要素
专题:函数的性质及应用
分析:根据函数的定义和函数图象之间的关系即可得到结论.
解答: 解:在A,B,C中,都存在两个y值与x对应,不满足函数值的唯一性,只有D满足条件,
故选:D
点评:本题主要考查函数图象的判断,根据函数的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若某空间几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形BCDE是直角梯形,CD∥BE,CD丄BC,CD=
1
2
BE=2,平面BCDE丄平面ABC;又已知△ABC为等腰直角三角形,AB=AC=4,M,F分别为BC,AE的中点.
(1)求直线CD与平面DFM所成角的正弦值;
(2)能否在线段EM上找到一点G,使得FG丄平面BCDE?若能,请指出G的位置,
并加以证明;若不能,请说明理由;
(3)求三棱锥F-DME的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且a>c.已知
BA
BC
=2,cosB=
1
3
,b=3.
(1)求a和c的值;
(2)求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(0)=2,且对任意实数x,f(x)-f′(x)>1恒成立,则f(x)>ex+1的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}.
(1)若B⊆A,求实数a的取值范围;
(2)若a=1,求:A∪B,(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

设S={x|2x+1>0},T={x|3x-5<0},则S∩T=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x+b
(a、b为常数)
(1)若b=1,解不等式f(x-1)<0;
(2)若a=1,当x∈[-1,2]时,f(x)>
-1
(x+b)2
恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

1
0
1-x2
dx-
π
0
sinxdx=
 

查看答案和解析>>

同步练习册答案