精英家教网 > 高中数学 > 题目详情

设函数f(x)=x2ex-1+ax3+bx2(其中e是自然对数的底数),已知x=-2和x=1为函数f(x)的极值点.
(Ⅰ)求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)是否存在实数M,使方程f(x)=M有4个不同的实数根?若存在,求出实数M的取值范围;若不存在,请说明理由.

解:(Ⅰ)求导函数,可得f′(x)=(x2+2x)ex-1+3ax2+2bx,…(1分)
∵x=-2和x=1为函数f(x)的极值点,
∴f′(-2)=f′(1)=0,…(2分)
,解得,…(3分)
所以,,b=-1.…(4分)
(Ⅱ)∵,b=-1,∴f′(x)=(x2+2x)ex-1-x2-2x=(x2+2x)(ex-1-1),…(5分)
令f′(x)=0,解得x1=-2,x2=0,x3=1,…(6分)
∵令f′(x)<0,可得x∈(-∞,-2)∪(0,1),令f′(x)>0,可得x∈(-2,0)∪(1,+∞),…(8分)
∴f(x)在区间(-2,0)和(1,+∞)上是单调递增的,在区间(-∞,-2)和(0,1)上是单调递减的.…(9分)
(Ⅲ)由(Ⅰ)得,由(Ⅱ)得函数的极大值为f(x)极大值=f(0)=0,…(10分)
函数的极小值为f(x)极小值=f(-2)=,和f(x)极小值=f(1)=- …(11分)
,…(12分)
f(-3)=(-3)2e-4+9-9=9e-4>0,f(3)=32e2-9-9=9(e2-2)>0,…(13分)
通过上面的分析可知,当M∈时方程f(x)=M恰有4个不等的实数根.
所以存在实数M,使方程f(x)=M有4个根,其M取值范围为.…(14分)
分析:(Ⅰ)求导函数,利用x=-2和x=1为函数f(x)的极值点,可得导数值为0,即可方程,即可求实数a和b的值;
(Ⅱ)由导数的正负,即可确定函数的单调性;
(Ⅲ)确定函数的极大值与极小值,即可知使方程f(x)=M有4个根的M取值范围.
点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查方程根问题,解题的关键是正确求导,确定函数的单调性与极值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案