精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
b-2x2x+a
是奇函数.
(1)求a,b的值;
(2)用定义证明f(x)在(-∞,+∞)上为减函数;
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.
分析:(1)根据奇函数定义,利用f(0)=0且f(-1)=-f(1),列出关于a、b的方程组并解之得a=b=1;
(2)根据函数单调性的定义,任取实数x1、x2,通过作差因式分解可证出:当x1<x2时,f(x1)-f(x2)>0,即得函数f(x)在(-∞,+∞)上为减函数;
(3)根据函数的单调性和奇偶性,将不等式f(t2-2t)+f(2t2-k)<0转化为:k<3t2-2t对任意的t∈R都成立,结合二次函数的图象与性质,可得k的取值范围.
解答:解:(1)∵f(x)为R上的奇函数,∴f(0)=0,可得b=1
又∵f(-1)=-f(1)
1-2-1
2-1+a
=-
1-2 
2 +a
,解之得a=1
经检验当a=1且b=1时,f(x)=
1-2x
2x+1
,满足f(-x)=-f(x)是奇函数.    …(4分)
(2)由(1)得f(x)=
1-2x
2x+1
=-1+
2 
2x+1

任取实数x1、x2,且x1<x2
则f(x1)-f(x2)=
2 
2x1+1
-
2 
2x2+1
=
2(2x2-2x1)
(2x1+1)(2x2+1)

∵x1<x2,可得2x12x2,且(2x1+1)(2x2+1)>0
∴f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-∞,+∞)上为减函数;     …(8分)
(3)根据(1)(2)知,函数f(x)是奇函数且在(-∞,+∞)上为减函数.
∴不等式f(t2-2t)+f(2t2-k)<0恒成立,即f(t2-2t)<-f(2t2-k)=f(-2t2+k)
也就是:t2-2t>-2t2+k对任意的t∈R都成立.
变量分离,得k<3t2-2t对任意的t∈R都成立,
∵3t2-2t=3(t-
1
3
2-
1
3
,当t=
1
3
时有最小值为-
1
3

∴k<-
1
3
,即k的范围是(∞,-
1
3
).                                  …(12分)
点评:本题以含有指数式的分式函数为例,研究了函数的单调性和奇偶性,并且用之解关于x的不等式,考查了基本初等函数的简单性质及其应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案