精英家教网 > 高中数学 > 题目详情
若双曲线的离心率等于,直线与双曲线的右支交于两点.
(1)求的取值范围;
(2)若,点是双曲线上一点,且,求
(1)(2),

试题分析:(1)由 得 
故双曲线的方程为    2分

    得       4分
又直线与双曲线右支交于两点,所以
      解得-----6分
(2)

 又  ∴       9分
那么
,由已知,得

 ,得
.----------14分
点评:直线与双曲线相交时常联立方程组,转化为关于x或y的二次方程,利用韦达定理设而不求的方法
再将所求问题用根与系数的关系的表示
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为P是椭圆上一动点,如果延长F1PQ,使,那么动点Q的轨迹是(      )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知拋物线x2=4py(p>0)与双曲线有相同的焦点F,点A 是两曲线的一个交点,且AF丄y轴,则双曲线的离心率为
A,    B.    C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+=1(a>b>0)上一点A关于原点的对称点为B, F为其右焦点, 若AF⊥BF, 设∠ABF=, 且∈[,], 则该椭圆离心率的取值范围为            (       )
A.[,1 ) B.[,]C.[, 1) D.[,

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点是双曲线与圆在第一象限的交点,其中分别是双曲线的左、右焦点,若,则双曲线的离心率为______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线C的直角坐标方程为,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为 __________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动圆过定点,且与直线相切,其中.设圆心的轨迹的程为
(1)求
(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,计算
(3)曲线上的两个定点,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围

查看答案和解析>>

同步练习册答案