精英家教网 > 高中数学 > 题目详情

【题目】已知函数(a∈R),若函数恰有5个不同的零点,则的取值范围是(  )

A. B. C. D.

【答案】A

【解析】

利用函数的导数,判断函数的单调性求出函数的最值,通过函数的图象,转化求解即可.

x0时,,,

0x1时,f′(x)<0,函数fx)单调递减;

x1时,f′(x)>0,函数fx)单调递增,

所以fxminf1)=1

x0时,fx)=ax+3的图象恒过点(03),

a0x0时,fx)≥f0)=3

a0x0时,fx)≤f0)=3

作出大致图象如图所示.

方程ffx))﹣205个不同的根,即方程ffx))=2有五个解,

tfx),则ft)=2

结合图象可知,当a0时,方程ft)=2有三个根t1(﹣∞,0),t201),t313).(,∴1t33),于是fx)=t1有一个解,fx)=t2有一个解,

fx)=t3有三个解,共有5个解,

而当a0时,结合图象可知,方程ffx))=2不可能有5个解.

综上所述:方程ffx))﹣20a0时恰有5个不同的根.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是椭圆 的四个顶点,菱形的面积与其内切圆面积分别为 .椭圆的内接的重心(三条中线的交点)为坐标原点.

(1)求椭圆的方程;

(2) 的面积是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,

)求证

)求二面角的大小;

)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面平面,且位于之间.点.

1)求证:.

2)设ADCF不平行,且ABCD为定点,间的距离为间的距离为h.当的值是多少时,的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论的单调性;

(Ⅱ)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假.

1)过不在平面内的一点,有且只有一个平面与这个平面平行;

2)过不在平面内的一条直线,有且只有一个平面与这个平面平行;

3)给定两个平行平面中一个平面内的一条直线,则在另一个平面内有且只有一条直线与这条直线平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l与圆C交于AB两点,P是圆C上不同于AB的任意一点.

(1)求圆心的极坐标;

(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且.

1)求的解析式;

2)设函数,当时,求的最小值;

3)设函数,若对任意,总存在,使得成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次人才招聘会上,有一家公司的招聘员告诉你,我们公司的收入水平很高”“去年,在50名员工中,最高年收入达到了200万,员工年收人的平均数是10",而你的预期是获得9万元年薪.

1)你是否能够判断年薪为9万元的员工在这家公司算高收入者?

2)如果招聘员继续告诉你,员工年收入的变化范围是从3万到200,这个信息是否足以使你作出自己是否受聘的决定?为什么?

3)如果招聘员继续给你提供了如下信息,员工收人的第一四分位数为4.5万,第三四分位数为9.5万,你又该如何使用这条信息来作出是否受聘的决定?

4)根据(3)中招聘员提供的信息,你能估计出这家公司员工收入的中位数是多少吗?为什么平均数比估计出的中位数高很多?

查看答案和解析>>

同步练习册答案